首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(a,b)在[a,b]上二阶可导,f(a)=f(b)=0.证明至少存在一点ξ∈(a,b)使得|f〞(ξ)|≥|f(χ)|.
设f(a,b)在[a,b]上二阶可导,f(a)=f(b)=0.证明至少存在一点ξ∈(a,b)使得|f〞(ξ)|≥|f(χ)|.
admin
2018-06-12
82
问题
设f(a,b)在[a,b]上二阶可导,f(a)=f(b)=0.证明至少存在一点ξ∈(a,b)使得|f〞(ξ)|≥
|f(χ)|.
选项
答案
f(χ)在[a,b]上连续,|f(χ)|在[a,b]上亦连续,设c为|f(χ)|在[a,b]上的最大值点.若c=a,则f(χ)=0,结论显然成立.故可设a<c<b,从而任给χ∈(a,b),有|f(χ)|f≤|f(c)|,即-|f(c)|≤f(χ)≤|f(c)|. 若f(c)>0,则f(χ)≤f(c),从而f(c)为f(χ)的最大值;若f(c)<0,则有f(χ)≥f(c),即f(c)为f(χ)的最小值,由此可知,总有f′(c)=0. 把函数f(χ)在χ=c展开为泰勒公式,得 f(χ)=f(c)+f′(c)(χ-c)+[*](χ-c)
2
=f(c)+[*](χ-c)
2
. (*) 若a<c≤[*],令χ=a,则由(*)及题设有 f(a)=f(c)+[*](a-c)
2
,即|f(c)|=[*](a-c)
2
. 由于a<c≤[*],0<c-a≤[*],因此 |f(c)|=[*] 于是|f〞(ξ)|≥[*]|f(χ)| 若[*]<c<b,令χ=b,则由(*)及题设有 f(b)=f(c)+[*](b-c)
2
,即|f(c)|=[*](b-c)
2
. 由于[*]<c<b,b-c<b-[*],因此 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/6Tg4777K
0
考研数学一
相关试题推荐
设A=那么(P-1)2010A(Q2011)-1=()
求线性方程组的通解,并求满足条件χ12=χ22的所有解.
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别为α,β的转置.证明:r(A)≤2.
设矩阵A与B=相似,则r(A)+r(A-2E)=_______.
设A为n阶非零矩阵,E为n阶单位矩阵.若A3=O,则()
设a1,a2,…,an是一组n维向量,已知n维单位坐标向量e1,e2,…,en能由它们线性表示,证明a1,a2,…,an线性无关.
下列等式或不等式中正确的共有
定积分∫01arctan的值等于
(Ⅰ)求级数的收敛域;(Ⅱ)求证:和函数S(χ)=定义于[0,+∞)且有界.
(Ⅰ)求累次积分J=(Ⅱ)设连续函数f(χ)满足f(χ)=1+∫χ1f(y)f(y-χ)dy,记I=∫01f(χ)dχ,求证:I=1+∫01f(y)dy∫0yf(y-χ)dχ,(Ⅲ)求出I的值.
随机试题
糖皮质激素对血液成分的影响有()。
为了增加X射线拍片的灵敏度,焊缝余高值不能太大。()
管道水锤有什么危害性?
个体劳动者的主要收入属于()
塔器类设备的机械化吊装机械有()起重机。
信用证是指银行有条件的付款承诺,即开证银行依照客户(开证申请人)的要求和指示,承诺在符合信用证条款的情况下,凭规定的单据()。
准备在甲、乙两地间竖电杆,当两杆间隔为30米比间隔40米时多用电杆30根。求甲、乙两地相距多少米?()
阅读下列材料,回答下列题。2010年一季度,我国水产品贸易进出口总量158.7万吨,进出口总额40.9亿美元,同比分别增长14.2%和29.0%。其中,出口量67.1万吨,出口额26.5亿美元,同比分别增长11.7%和24.9%;进口量91.6万吨
将时间上连续,频带有限的声音信号转化为时间上离散的一组值的过程称为______。
A、 B、 C、 A
最新回复
(
0
)