首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a<b=f(b).证明:存在ξi∈(a,b)(i=1,2,…,n),使得=1.
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a<b=f(b).证明:存在ξi∈(a,b)(i=1,2,…,n),使得=1.
admin
2015-07-10
38
问题
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a<b=f(b).证明:存在ξ
i
∈(a,b)(i=1,2,…,n),使得
=1.
选项
答案
令h=[*].因为f(x)在[a,b]上连续且单调增加,且f(a)=a<b=f(b), 所以f(a)=a<a+h<…<a+(n一1)h<b=f(b),由端点介值定理和函数单调性, 存在a<c
1
<c
2
<…<c
n-1
<b,使得 f(c
1
)=a+h,f(c
2
)=a+2h,…,f(c
n-1
)=a+(n一1)h,再由微分中值定理,得 f(c
1
)一f(a)=f’(ξ)(c
1
一a),ξ∈(a,c
1
), f(c
2
)一f(c
1
)=f’(ξ
2
)(c
2
一c
1
),ξ
2
∈(c
1
,c
2
),… f(b)一f(c
n-1
)=f’(ξ
n
)(b一c
n-1
),ξ∈(c
n-1
,b), 从而有[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/6jU4777K
0
考研数学三
相关试题推荐
2021年8月23日至24日,习近平总书记在河北承德考察时指出,实践充分证明,只有()才能实现中华民族的大团结,只有()才能凝聚各民族、发展各民族、繁荣各民族。
在十进制加法运算范围内,1+1=2是正确的,1+1=10是错误的。但在二进制加法运算范围内,1+1=10是正确的,1+1=2是错误的。这说明
毛泽东在《中国的红色政权为什么能够存在?》一文中曾详尽地讲述了中国红色政权发生和存在的五点原因,红军第五次反“围剿”的失败充分证明了()。
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f〞(ε)=0.
求曲线x2+z2=10,y2+z2=10在点(1,1,3)处的切线和法平面方程.
设f(x)是处处可导的奇函数,证明:对任-b>0,总存在c∈(-b,b)使得fˊ(c)=f(b)/b.
利用函数的凹凸性,证明下列不等式:
求密度为常数μ,半径为R的球体x2+y2+z2≤R2对位于点(0,0,a)(a>R)处单位质点的引力,并说明该引力如同将球的质量集中在球心时两质点间的引力.
求由下列方程所确定的隐函数y=y(x)的二阶导数d2y/dx2:(1)y=1+xey;(2)y=tan(x+y);
有一下凸曲线L位于xOy面的上半平面内,L上任一点M处的法线与x轴相交,其交点记为B,如果点M处的曲率半径始终等于线段MB之长,并且L在点(1,1)处的切线与y轴垂直,试求L的方程.
随机试题
A、气相色谱法B、液相色谱法C、薄层色谱法D、比色法E、电感耦合等离子体质谱法砷元素含量测定采用
A.锋电位B.阈电位C.负后电位D.局部电位E.正后电位可兴奋细胞受阈下刺激后,可出现()。
下列有关Cushing综合征(皮质醇增多症)的叙述,哪一项是错误的()
国土资源行政主管部门在收到申请人提出的土地权属争议调查处理申请后,收到申请书之日起()个工作日内提出是否受理的意见。
380V异步电动机绕组的绝缘电阻应不低于()。
行政诉讼中可以作为书证的文书包括()。
关于政府采购合同,下列说法错误的是()。
关于癔症,以下说法正确的是()。
阅读下面一篇文章,回答问题。庄子的翅膀
2,2,10,30,100,()。
最新回复
(
0
)