首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上有定义,且exf(x)与e-f(x)在[0,1]上单调增加.证明:f(x)在[0,1]上连续.
设f(x)在[0,1]上有定义,且exf(x)与e-f(x)在[0,1]上单调增加.证明:f(x)在[0,1]上连续.
admin
2016-10-13
79
问题
设f(x)在[0,1]上有定义,且e
x
f(x)与e
-f(x)
在[0,1]上单调增加.证明:f(x)在[0,1]上连续.
选项
答案
对任意的x
0
∈[0,1],因为e
x
f(x)与e
-f(x)
在[0,1]上单调增加, 所以当x<x
0
,有[*]f(x
0
), 令x→x
0
-
,由夹逼定理得f(x
0
一0)=f(x
0
); 当x>x
0
时,有[*]f(x
0
)≤f(x)≤f(x
0
), 令x→x
0
+
,由夹逼定理得f(x
0
+0)=f(x
0
),故f(x
0
—0)=f(x
0
+0)=f(x
0
), 即f(x)在x=x
0
处连续,由x
0
的任意性得f(x)在[0,1]上连续.
解析
转载请注明原文地址:https://kaotiyun.com/show/7Iu4777K
0
考研数学一
相关试题推荐
[*]
7/8
自动生产线在调整后出现废品的概率为P,当在生产过程中出现废品时,立即重新进行调整,求在两次调整之间生产的合格品数X的分布列及其数学期望.
利用数学期望的性质,证明方差的性质:(1)Da=0;(2)D(X+a)+DX;(3)D(aX)=a2DX.
连续进行n次独立重复试验,设每次试验中成功的概率为p,0≤p≤1.问p为何值时,成功次数的方差为0?p为何值时,成功次数的方差达到最大?
证明:(1)周长一定的矩形中,正方形的面积最大;(2)面积一定的矩形中,正方形的周长最小。
四名乒乓球运动员——1,2,3,4参加单打比赛,在第一轮中,1与2比赛,3与4比赛.然后第一轮中的两名胜者相互比赛决出冠亚军,两名败者也相互比赛决出第三名和第四名.于是比赛的一种最终可能结果可以记作1324(表示1胜2,3胜4,然后1胜3,2胜4).设
一串钥匙,共有10把,其中有4把能打开门,因开门者忘记哪些能打开门,便逐把试开,求下列事件的概率:第3把钥匙才打开门
利用数学期望的性质,证明方差的性质:(1)Da=0;(2)D(X+a)+DX;(3)D(aX)=a2DX.
随机试题
A.Miles手术B.Hartmann手术C.乙状结肠造口术D.Dixon手术E.拉下式直肠癌切除术距肛门口7~10cm之间的直肠癌多采用
失神发作(以往称小发作)见于
二尖瓣狭窄的主要诊断依据是
“君主之官”是()。
土不足时,木对土的过度制约。属于
盘盈的固定资产,按其市价或同类、类似固定资产的市场价格确定其成本。()
阅读下列材料,回答问题。材料一:17世纪,整个欧洲大陆处于宗教的迫害之中,反映自由、民主和科学的新思想,被当作“异端”“邪说”而受压制,不少有发明创造的科技人才被处刑罚。与此同时,战争也连绵不断,法国处于内战和向外扩张的连年战争中。意大利四分五裂
教育教学过程是教师直接用自身的知识、智慧、品德影响学生的过程。这反映了教师劳动的特点是()
设A3×3=[α1,α2,α3],方程组Ax=β有通解kξ+η=kE1,2,一3]T+[2,一1,1]T,其中k是任意常数.证明:方程组[α1+α2+α3+β,α1,α2,α3]x=β有无穷多解,并求其通解.
Eleven-year-oldAngelawasstrickenwithadebilitating(衰弱的)diseaseinvolvinghernervoussystem.Shewasunabletowalkandh
最新回复
(
0
)