首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2005年)已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=O,求线性方程组Aχ=0的通解.
(2005年)已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=O,求线性方程组Aχ=0的通解.
admin
2016-05-30
48
问题
(2005年)已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=
(k为常数),且AB=O,求线性方程组Aχ=0的通解.
选项
答案
由AB=O知矩阵B的每一列都是方程组Aχ=0的解,因此Aχ=0必有非零解,要求其通解是要求出它的基础解系即可.而基础解系所含向量个数等于3-r(A),所以需要先确定A的秩,r(A). 由于AB=O,故r(A)+r(B)≤3,又由a,b,c不全为零,可知r(A)≥1. 当k≠9时,r(B)=2,于是r(A)=1; 当k=9时,r(B)=1,于是r(A)=1或r(A)=2. (1)当k≠9时,因r(A)=1,知Aχ=0的基础解系含2个向量.又由AB=O可得 [*] 由于η
1
=(1,2,3)
T
,η
2
=(3,6,k)
T
线性无关,故η
1
,η
2
为Aχ=0的一个基础解系,于是Aχ=0的通解为 χ=c
1
η
1
+c
2
η
2
,其中c
1
,c
2
为任意常数. (2)当k=9时,分别就r(A)=2和r(A)=1进行讨论. 如果r(A)=2,则Aχ=0的基础解系由一个向量构成.又因为A[*]=0,所以Aχ=0的通解为χ=c
1
(1,2,3)
T
,其中c
1
为任意常数. 如果r(A)=1,则Aχ=0的基础解系由两个向量构成.又因为A的第一行为(a,b,c)且a,b,c不全为零,所以Aχ=0等价于aχ
1
+bχ
2
+cχ
3
=0.不妨设a≠0,则η
1
=(-b,a,0)
T
,η
2
=(-c,0,a)
T
是Aχ=0的两个线性无关的解,故Aχ=0的通解为 χ=c
1
η
1
+c
2
η
2
,其中c
1
,c
1
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/7K34777K
0
考研数学二
相关试题推荐
设an=∫0π/4tannxdx,证明:对任意常数λ>0,级数收敛.
计算三重积分dxdydz,其中Ω为由椭球面所围成的空间闭区域.
设f(x),g(x)是连续函数,当x→0时,f(x)与g(x)是等价无穷小,令F(x)=∫0xf(x-t)dt,G(x)=|xg(xt)dt,则当x→0时,F(x)是G(x)的().
设为连续函数,试确定a和b的值。
(2002年试题,二)设函数y=f(x)在(0,+∞)内有界且可导,则().
(2002年试题,十一)已知A,B为三阶矩阵,且满足2A-1B=B-4E,其中E是三阶单位矩阵.(1)证明:矩阵A-2E可逆;(2)若求矩阵A.
(1999年试题,二)设f(x)是连续函数,F(x)是f(x)的原函数,则().
(2004年)曲线y=与直线χ=0,χ-t(t>0)及y=0围成一曲边梯形.该曲边梯形绕χ轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在χ=t处的底面积为F(t).(Ⅰ)求的值;(Ⅱ)计算极限
(1999年)计算
(2003年)设函数y=y(χ)在(-∞,+∞)内具有二阶导数,且y′≠0,χ=χ(y)是y=y(χ)的反函数.(1)试将χ=χ(y)所满足的微分方程=0变换为y=y(χ)满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0
随机试题
以下不是谈判力的主要来源的是()
GeologyandHealth(1)Theimportanceofparticularmetalsinthehumandiethasbeenrealizedwithinthepastfewdecades,
公有制的实现形式可以是()。
Shegottoknowtheyoungmanverywell______shehadworkedforsolong.
A.胆碱类和氨基酸类B.儿茶酚胺类C.肽类递质D.嘌呤类E.气体类储存于轴突末梢内大而具有致密中心的突触小泡中递质是
疮疡最常见的病因是
两个以上人民法院都有管辖权的诉讼,原告可以向其中一个人民法院起诉;原告向两个以上有管辖权的人民法院起诉的,由最先收到起诉状的人民法院管辖。()
现行政策规定,下列房屋中,不征收房产税的有()。
对下列两组句子中加下划线的字的意义和用法判断正确的是()。①故木受绳则直,金就砺则利②临视,则虫集冠上③入则与王图议国事,以出号令④居庙堂之高则忧其民
-1
最新回复
(
0
)