首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,t](t>0)上有n阶导数且非负,已知f(0)=f’+(0)=f”+(0)=…=f+(n-2)(0)=0,f(n)(x)>0. (I)求F(t)=∫0tsf(x)dx-t∫0tf(x)dx(n为大于1的正整数)的n阶导数; (Ⅱ)证明:(
设f(x)在[0,t](t>0)上有n阶导数且非负,已知f(0)=f’+(0)=f”+(0)=…=f+(n-2)(0)=0,f(n)(x)>0. (I)求F(t)=∫0tsf(x)dx-t∫0tf(x)dx(n为大于1的正整数)的n阶导数; (Ⅱ)证明:(
admin
2022-04-27
107
问题
设f(x)在[0,t](t>0)上有n阶导数且非负,已知f(0)=f’
+
(0)=f”
+
(0)=…=f
+
(n-2)
(0)=0,f
(n)
(x)>0.
(I)求F(t)=∫
0
t
sf(x)dx-
t∫
0
t
f(x)dx(n为大于1的正整数)的n阶导数;
(Ⅱ)证明:(Ⅰ)中的F(t)>0.
选项
答案
(Ⅰ)F(t)=∫
0
t
xf(x)dxt-[*]t∫
0
t
f(x)dx变形为 (n+1)F(t)=(n+1)∫
0
t
xf(x)dx-nt∫
0
t
f(x)dx, 则 [(n+1)F(t)]’=(n+1)tf(t)-n[∫
0
t
f(x)dx+tf(t)] =tf(t)-n∫
0
t
f(x)dx, [(n+1)F(t)]”=f(t)+tf’(t)-nf(t)=(1-n)f(t)+tf’(f), [(n+1)F(t)]’”=(1-n)f’(t)+f’(t)+f”(t)=(2-n)f’(t)+tf”(t), 依此类推,得 [(n+1)F(t)]
(n)
)=(n-1-n)f
(n-2)
(t)+tf
(n-1)
(t), 故[F(t)]
(n)
=[*] (Ⅱ)由f
0
(n-2)
(0)=0,应用拉格朗日中值定理,有 [F(t)]
(n)
[*] 由f
(n)
)>0,知f
(n-1)
(x)单调增加,故[F(t)]
(n)
>0,所以[F(t)]
(n-1)
单调增加.又[F(0)]
(n-1)
=0,知[F(t)]
(n-1)
>[F(0)]
(n-1)
=0.依此类推,可得F(t)>F(0)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/7LR4777K
0
考研数学三
相关试题推荐
有甲、乙两个口袋,两袋中都有3个白球2个黑球,现从甲袋中任取一球放人乙袋,再从乙袋中任取4个球,设4个球中的黑球数用X表示,求X的分布律.
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,满足aTβ=0,记n阶矩阵A=αβT.求A的特征值和特征向量.
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,满足aTβ=0,记n阶矩阵A=αβT.求A2;
设函数f(x)在(一∞,+∞)内具有连续的导数,且满足求函数f(x)的表达式.
某保险公司接受了10000辆电动自行车的保险,每辆车每年的保费为12元.若车丢失,则赔偿车主1000元.假设车的丢失率为0.006,对于此项业务,试利用中心极限定理,求保险公司:一年获利润不少于40000元的概率β;
设b>a>e,证明:ab>ba.
设总体X与Y都服从正态分布N(0,σ2),已知X1,X2,…,Xm与Y1,Y2,…,Yn均是来自正态总体X与Y的两个相互独立的简单随机样本,统计量服从t(n)分布,则m与n应满足的关系为()
设二阶常系数微分方程y〞+ayˊ+βy=ye2x有一个特解为y=e2x+(1+x)ex,试确定α、β、γ和此方程的通解.
设f(x),g(x)在[a,b]上二阶可导,g’’(x)≠0,f(a)=f(b)=g(a)—g(b)=0.g(x)≠0.任意x∈(a,b);
设函数f(t)有二阶连续的导数,=__________.
随机试题
以下所列抗菌药物的给药途径中,最正确的是
CT扫描中常用的FOV是指
瘢痕性类天疱疮在口腔中病损的最常见部位是
潮湿环境下,照明电源的电压不大于()V。
新增付款方式。付款方式编码:01付款方式名称:银行汇票进行票据管理:不需要
以下关于公司型基金的表述中,正确的是()。
将细菌培养物由供氧条件转为厌氧条件,下列过程中会加快的一种是()。
王充认为教育的最高目标是培养“鸿儒”,其有别于儒生、通人、文人的显著特征是
表达式3.6-5/2+1.2+5%2的值是
Whydoestheprofessormention$20bill?
最新回复
(
0
)