首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
以下4个命题,正确的个数为 ( ) ①设f(x)是(-∞,+∞)上连续的奇函数,则∫-∞+∞f(x)dx出必收敛,且∫-∞+∞f(x)dx=0; ②设f(x)在(-∞,+∞)上连续,且存在,则∫-∞+∞f(x)dx必收敛,且 ③若∫-∞+∞f
以下4个命题,正确的个数为 ( ) ①设f(x)是(-∞,+∞)上连续的奇函数,则∫-∞+∞f(x)dx出必收敛,且∫-∞+∞f(x)dx=0; ②设f(x)在(-∞,+∞)上连续,且存在,则∫-∞+∞f(x)dx必收敛,且 ③若∫-∞+∞f
admin
2017-10-12
40
问题
以下4个命题,正确的个数为 ( )
①设f(x)是(-∞,+∞)上连续的奇函数,则∫
-∞
+∞
f(x)dx出必收敛,且∫
-∞
+∞
f(x)dx=0;
②设f(x)在(-∞,+∞)上连续,且
存在,则∫
-∞
+∞
f(x)dx必收敛,且
③若∫
-∞
+∞
f(x)dx与∫
-∞
+∞
g(x)dx都发散,则∫
-∞
+∞
[f(x)+g(x)]dx未必发散;
④若∫
-∞
0
f(x)dx与∫
0
+∞
f(x)dx都发散,则∫
-∞
+∞
f(x)dx未必发散.
选项
A、1个
B、2个
C、3个
D、4个
答案
A
解析
∫
-∞
+∞
f(x)dx收敛<=>存在常数a,使∫
-∞
a
f(x)dx和∫
a
+∞
f(x)dx都收敛,此时
∫
-∞
+∞
f(x)dx=∫
-∞
a
f(x)dx+∫
a
+∞
f(x)dx.
设f(x)=x,则f(x)是(-∞,+∞)上连续的奇函数,且
=0.但是
∫
-∞
0
f(x)dx=∫
-∞
0
xdx=∞,∫
0
+∞
f(x)dx=∫
0
+∞
xdx=∞,
故∫
-∞
+∞
f(x)dx发散,这表明命题①,②,④都不是真命题.
设f(x)=x,g(x)=-x,由上面讨论可知∫
-∞
+∞
f(x)dx与∫
-∞
+∞
g(x)dx都发散,但∫
-∞
+∞
[f(x)+g(x)]dx收敛,这表明命题③是真命题.故应选(A).
转载请注明原文地址:https://kaotiyun.com/show/7MH4777K
0
考研数学三
相关试题推荐
设z=f(u,v,x),u=φ(x,y),v=ψ(y),求复合函数z=f(φ(x,y),φ(y),x)的偏导数
证明推广的积分中值定理:设F(x)与G(x)都是区间[a,b]上的连续函数,且G(x)≥0,G(x)≠0,则至少存在一点ξ∈[a,b]使得
差分方程的通解为______.
设总体X服从标准正态分布,(X1,X2,…,Xn)为总体的简单样本,,则().
设随机变量X1,X2,…,Xm+n(m<n)独立同分布,其方差为σ2,令求:(Ⅰ)D(Y),D(Z);(Ⅱ)ρYZ.
从抛物线y=x2一1的任意一点P(t,t2—1)引抛物线y=x2的两条切线,(I)求这两条切线的切线方程;(II)证明该两条切线与抛物线y=x2所围面积为常数.
设函数y(x)在(一∞,+∞)内有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.(I)试将x=x(y)所满足的方程变换成y=y(x)所满足的微分方程;(II)求解变换后的微分方程的通解.
设f(x)=,则当x→0时,f(x)是g(x)的().
设当x→0时,etanx一ex与xn是同阶无穷小,则n为()
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0).当L与直线y=ax所围成平面图形的面积为时,确定口的值.
随机试题
输液过程中,病人在床上小便后,溶液不滴,局部无肿胀,挤压胶管有回血,局部热敷仍无效,首先应考虑为此耽搁10分钟,该病人何时输完
律师:法庭:辩论
工程管线的敷设方式可以分为()。
施工过程中,工程师根据工程的需要,可以就( )情况发布变更指令。
根据下面材料,回答下列题目:王小姐是一个国家公务员,她向银行申请了20年期20万元贷款,利率为5.508%。理财规划师应该建议王小姐选择的还款方式是( )。
增值税是对在我国境内销售货物或者提供_______、修理修配劳务,以及__________货物的单位和个人,就其取得的货物或应税劳务的销售额,以及进口货物的金额计算纳税,并实行税款抵扣的一种流转税。()[2008年11月二级真题]
关于以下银行财务指标的说法不正确的是()。
“复其心”,“明其心”,“尽其心”,“学以去其昏蔽”。这种对教育作用的认识出自()
甲向乙发出销售某项产品的要约,乙对该要约中()作出的变更属于实质性变更。
以下程序的输出结果是()。#includemain(){intb[3113]={0,1,2,0,1,2,0,1,2},i,j,t=1;for(i=0;i
最新回复
(
0
)