首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有向量组(Ⅰ):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(Ⅰ)与向量组(Ⅱ)等价?当a为何值
设有向量组(Ⅰ):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(Ⅰ)与向量组(Ⅱ)等价?当a为何值
admin
2021-11-09
67
问题
设有向量组(Ⅰ):α
1
=(1,0,2)
T
,α
2
=(1,1,3)
T
,α
3
=(1,-1,a+2)
T
和向量组(Ⅱ):β
1
=(1,2,a+3)
T
,β
2
=(2,1,a+6)
T
,β
3
=(2,1,a+4)
T
.试问:当a为何值时,向量组(Ⅰ)与向量组(Ⅱ)等价?当a为何值时,向量组(Ⅰ)与(Ⅱ)不等价?
选项
答案
方法1:由于行列式|α
1
,α
2
,α
3
|=a+1,故当a≠-1时,秩[α
1
,α
2
,α
3
]=3.方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
i
(i=1,2,3)有解(且有唯一解),所以向量组(Ⅱ)可由向量组(Ⅰ)线性表示;又由行列式|β
1
,β
2
,β
3
|=6≠0,同理可知向量组(Ⅰ)可由(Ⅱ)线性表示.故当a≠-1时.(Ⅰ)与(Ⅱ)等价.当a=1时,由于秩[α
1
,α
2
,α
3
]≠秩[α
1
,α
2
,α
3
┆β
1
],故方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
1
无解,即β
1
不能由向量组(Ⅰ)线性表示,所以(Ⅰ)与(Ⅱ)不等价. 方法2:若(Ⅰ)与(Ⅱ)等价,则秩(Ⅰ)=秩(Ⅱ),而秩(Ⅱ)=3,故秩(Ⅰ)=3,[*]|α
1
,α
2
,α
3
|=a+1≠0,[*]a≠-1;反之,若a≠-1,则(Ⅰ)和(Ⅱ)都是线性无关组,而α
1
,α
2
,α
3
,β
i
线性相关(4个3维向量必线性相关),[*]β
i
可由α
1
,α
2
,α
3
线性表示(i=1,2,3),同理知α
j
可由β
1
,β
2
,β
3
线性表示(j=1,2,3),故(Ⅰ)与(Ⅱ)等价.综上可知,(Ⅰ)与(Ⅱ)等价[*]a≠-1.
解析
转载请注明原文地址:https://kaotiyun.com/show/7My4777K
0
考研数学二
相关试题推荐
求
设an=,求an.
f(χ)=2χ+3χ-2,当χ→0时().
曲线r=eθ在θ=处的切线方程为_______.
设二阶常系数非齐次线性微分方程y〞+y′+qy=Q(χ)有特解y=3e-4χ+χ2+3χ+2,则Q(χ)=_______,该微分方程的通解为_______.
设0<a<1,证明:方程arctanχ=aχ在(0,+∞)内有且仅有一个实根.
设三角形三边的长分别为a,b,c,此三角形的面积设为S,求此三角形内的点到三边距离乘积的最大值,并求出这三个相应的距离.
设a1,a2...an为n个n维列向量,证明:a1,a2,...an线性无关的充分必要条件是.
已知=0,试确定常数a,b的值。
设x=tant,则[*]又∫etsintdt=-∫etd(cost)=-(etcost-∫etcostdt)=-etcost+etsint-∫etSintdt,故∫etsintdt=1/2(-etcost+etsint)。[*]
随机试题
在决定审美发生的诸多条件中()
领导艺术的特点有___________、___________、___________、___________。
张某,男性,65岁,教师。因左眼胀、眼痛并微感头痛和视物模糊7月而入院。7个月前左眼开始发生眼胀,早晨或用眼后加重,休息后则症状消失,故未加以注意。4个月前除眼胀外并有眼痛和轻微头痛,近来视物也感模糊,故来求医。以往身体健康,无特殊病史,全家成员也无类似疾
腹部叩诊出现移动性浊音,应首先考虑的是
继父唐某虐待其继女孙某,将孙折磨得痛苦不堪。一日唐某又无故殴打孙,孙有所反抗,唐即拿起一根筷子向孙刺去,致其失明。唐某构成何种犯罪?()
简要说明在新《幼儿园教育指导纲要(试行)》中,艺术教育的指导要点。
《人民警察法》第6条对人民警察的职责作了详细的规定,但是考虑到随着社会的不断发展,还会出现许多新的问题,所以又加了一个概括性规定,即“法律、法规规定的其他职责”。此中的“法律”是指()。
甲、乙、丙三人是朋友,他们每隔不同天数到健身馆去健身一次。甲每4天去一次,乙每5天去一次,丙每7天去一次。某年3月20日,他们三人恰好在健身馆相遇,则三人下次相遇的日期是()。
坚持以人为本,就是要以实现人的全面发展为目标,从人民群众的根本利益出发谋发展、促发展,不断满足人民群众日益增长的物质文化生活需要。()
「君、田中先生を まだ 覚えて いる?」 「うん、もちろん。———— 先生の 授業は おもしろかったね。」
最新回复
(
0
)