首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二阶常系数非齐次线性微分方程y〞+y′+qy=Q(χ)有特解y=3e-4χ+χ2+3χ+2,则Q(χ)=_______,该微分方程的通解为_______.
设二阶常系数非齐次线性微分方程y〞+y′+qy=Q(χ)有特解y=3e-4χ+χ2+3χ+2,则Q(χ)=_______,该微分方程的通解为_______.
admin
2019-08-23
68
问题
设二阶常系数非齐次线性微分方程y〞+y′+qy=Q(χ)有特解y=3e
-4χ
+χ
2
+3χ+2,则Q(χ)=_______,该微分方程的通解为_______.
选项
答案
-12χ
2
-34χ-19;y=C
1
e
-4χ
+C
2
e
3χ
+χ
2
+3χ+2(其中C
1
,C
2
为任意常数)
解析
显然λ=-4是特征方程λ
2
+λ+q=0的解,故q=-12,
即特征方程为λ
2
+λ-12=0,特征值为λ
1
=-4,λ
2
=3.
因为χ
2
+3χ+2为特征方程y〞+y′-12y=Q(χ)的一个特解,
所以Q(χ)=2+2χ+3-12(χ
2
+3χ+2)=12χ
2
-34χ-19,
且通解为y=C
1
e
-4χ
+C
2
e
3χ
+χ
2
+3χ+2(其中C
1
,C
2
为任意常数).
转载请注明原文地址:https://kaotiyun.com/show/e9A4777K
0
考研数学二
相关试题推荐
设可导函数y=y(x)由方程∫0x+ye—t2dt=∫0xxsin2tdt确定,则=______。
设微分方程xy’﹢2y=2(ex-1).(I)求上述微分方程的通解,并求使存在的那个解(将该解记为y0(x)),以及极限值;(Ⅱ)补充定义之后使y0(x)在x=0处连续,求y0’(x),并请证明:无论x=0还是x≠0,y0’(x)均连续.
已知n维向量组α1,α2,α3,α4是线性方程组Ax=0的基础解系,则向量组aα1﹢bα4,aα2﹢bα3,aα3﹢bα2,aα4﹢bα1也是Ax=0的基础解系的充分必要条件是()
设f(x)在x=0处连续,且x≠0时,f(x)=,求曲线y=f(x)在x=0对应的点处的切线方程.
f(x)=在区间(-∞,﹢∞)内零点的个数为()
设函数y(x)在区间[1,﹢∞)上具有一阶连续导数,且满足.求y(x).
设f(x)在区间(0,﹢∞)上连续,且严格单调增加.试求证:F(x)=在区间(0,﹢∞)上也严格单调增加.
设矩阵,行列式|A|=一1,又A*的属于特征值λ0的一个特征向量为α=(一1,一1,1)T,求a,b,c及λ0的值。
设二次型f(x1,x2,x3)=x12+x22+x32一2x1x2—2x1x3+2ax2x3通过正交变换化为标准形2y12+2y22+by32。求f在xTx=3下的最大值。
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2一α3,如果β=α1+α2+α3+α4,求线性方程组AX=β的通解.
随机试题
Itisnaturalforyoungpeopletobecriticaloftheirparentsattimesandtoblamethemformostofthemisunderstandingsbetw
虚证晕厥的配穴为
A.变质性炎B.卡他性炎C.假膜性炎D.肉芽肿性炎E.化脓性炎伤寒
下列行为中,依法构成强奸罪的有:
建筑装饰装修工程施工()不经穿管直接埋设电线。
以下各项不属于素质测评中对员工进行分类的标准的是()。
求I=,其中∑为上半球z=的上侧,a>0为常数.
Forachild,happinesshasamagicalquality.Iremembermakinghide-outsinnewlycuthay,playingcopsandrobbersinthewood
以下构成Python循环结构的方法中,正确的是()。
Itisn’texpectedtostartnibblingawayatcomputerdatasystemsuntilthedocksclickoverto2000,butthemillenniumbughas
最新回复
(
0
)