首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次线性方程组(Ⅰ)的基础解系为ξ1=[1,0,1,1]T,ξ2=[2,1,0,-1]T,ξ3=[0,2,1,-1]T,添加两个方程后组成齐次线性方程组(Ⅱ),求(Ⅱ)的基础解系.
已知齐次线性方程组(Ⅰ)的基础解系为ξ1=[1,0,1,1]T,ξ2=[2,1,0,-1]T,ξ3=[0,2,1,-1]T,添加两个方程后组成齐次线性方程组(Ⅱ),求(Ⅱ)的基础解系.
admin
2021-07-27
38
问题
已知齐次线性方程组(Ⅰ)的基础解系为ξ
1
=[1,0,1,1]
T
,ξ
2
=[2,1,0,-1]
T
,ξ
3
=[0,2,1,-1]
T
,添加两个方程
后组成齐次线性方程组(Ⅱ),求(Ⅱ)的基础解系.
选项
答案
方程组(Ⅰ)的通解为[*]其中k
1
,k
2
,k
3
是任意常数.代入添加的两个方程,得[*]得解η
1
=[2,-3,0]
T
,η
2
[0,1,-1]
T
,故方程组(Ⅱ)的基础解系为ξ
1
=2ξ
1
-3ξ
2
=[-4,-3,2,5]
T
,ξ
2
=ξ
2
-ξ
3
=[2,-1,-1,0]
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/7Ty4777K
0
考研数学二
相关试题推荐
设A是三阶矩阵,其中a11≠0,Aij=aij(i=1,2,3,j=1,2,3),则|2AT|=()
设证明:A=E+B可逆,并求A-1.
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.利用(1)的结果判断矩阵B—CTA一1C是否为正定矩阵,并证明结论.
确定常数a,b,c的值,使=4.
设A=(aij)为3阶非零实矩阵,且已知Aij=aij(其中Aij为aij的代数余子式),i,j=1,2,3.证明:A可逆,并求|A|与A-1.
设A是n阶矩阵,对于齐次线性方程组(I)Anx=0和(Ⅱ)An+1x=0,现有命题①(I)的解必是(Ⅱ)的解;②(Ⅱ)的解必是(I)的解;③(I)的解不一定是(Ⅱ)的解;④(Ⅱ)的解不一定是(I)的解.其中
已知齐次线性方程组同解,求a,b,c的值.
的一个基础解系为
rf(r2)dr改为先y后χ的累次积分的形式为_______.
用待定系数法求微分方程y″一y=xex的一个特解时,特解的形式是()(式中a,b为常数).
随机试题
A.希波克拉底B.马斯洛C.霍尔姆斯和雷赫D.李时珍E.南丁格尔最先提出“不伤害原则”的西方医学家是
绒毛膜癌最主要的转移途径是
如图7-19所示电路,正弦电流f2的有效值I2=1A,电流i3的有效值I3=2A,因此电流i1的有效值I1等于()。
下列验收中,项目法人不得作为验收委员会成员的是()。
甲公司授权其材料员到乙公司购买一批钢材,并交给材料员一份已盖公司公章的空白合同书,该材料员用此合同书与乙公司订立了购买钢材的合同。乙公司按时交货后未收到货款,双方发生纠纷后,乙公司应( )。
有限责任公司的股东向股东以外的人转让股权,应当经其他股东()同意。
根据我国现行《宪法》规定,全国人民代表大会常务委员会的组成人员中应当有适当名额的()。
设,求.
【B1】【B2】
Peopleusuallycommunicatebyspokenandwrittenlanguage,yettheycanalsocommunicatewithoutwordsandthiskindofcommunic
最新回复
(
0
)