首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,对于齐次线性方程组(I)Anx=0和(Ⅱ)An+1x=0,现有命题 ①(I)的解必是(Ⅱ)的解; ②(Ⅱ)的解必是(I)的解; ③(I)的解不一定是(Ⅱ)的解; ④(Ⅱ)的解不一定是(I)的解. 其中
设A是n阶矩阵,对于齐次线性方程组(I)Anx=0和(Ⅱ)An+1x=0,现有命题 ①(I)的解必是(Ⅱ)的解; ②(Ⅱ)的解必是(I)的解; ③(I)的解不一定是(Ⅱ)的解; ④(Ⅱ)的解不一定是(I)的解. 其中
admin
2019-08-12
68
问题
设A是n阶矩阵,对于齐次线性方程组(I)A
n
x=0和(Ⅱ)A
n+1
x=0,现有命题
①(I)的解必是(Ⅱ)的解;
②(Ⅱ)的解必是(I)的解;
③(I)的解不一定是(Ⅱ)的解;
④(Ⅱ)的解不一定是(I)的解.
其中正确的是 ( )
选项
A、①④
B、①②
C、②③
D、③④
答案
B
解析
当A
n
x=0时,易知A
n+1
x=A(A
n
X)=0,故(I)的解必是(Ⅱ)的解,也即①正确,③错误.
当A
n+1
x=0时,假设A
n
x≠0,则有x,Ax,…,A
n
x均不为零,可以证明这种情况下x,Ax,…,A
n
x是线性无关的.由于x,Ax,…,A
n
x均为n维向量,而n+1个n维向量是线性相关的,矛盾.故假设不成立,因此必有A
n
x=0.可知(Ⅱ)的解必是(I)的解,故②正确,④错误.故选(B).
转载请注明原文地址:https://kaotiyun.com/show/kcN4777K
0
考研数学二
相关试题推荐
设有向量组α1=(1,-1,2,α2=(0,3,1,2).α3=(3,0,7,14),α4=(1,-2,2,0),α5=(2,1,5,10),则该向量组的极大线性无关组是
设实对称矩阵A满足A2-3A+2E=O,证明:A为正定矩阵.
二次型f(x1,x2,x3)=2x12+x22-4x32-4x1x2-2x2x3的标准形为
证明方程x=asinx+b(a>0,b>0为常数)至少有一个正根不超过a+b.
设f(u,v)具有二阶连续偏导数,且满足fu’(u,v)+fv’(u,v)=uv求y=e-2xf(x,x)所满足的一阶微分方程,并求其通解.
设函数f(x)=其中g(x)二阶连续可导,且g(0)=1.讨论f’(x)在x=0处的连续性.
求函数的导数:y=aax+axx+axa+aaa(a>0).
求极限:
当x→0时,为x的三阶无穷小,则a,b分别为()
求极限:
随机试题
将农业废弃物秸秆通过糖化过程变为饲料,然后用牲畜排泄物及秸秆残渣培养食用菌,生产食用菌的残余废料可以用来养蚯蚓,而后把最终残余物返回农田,这是生态农业中物质、能量______利用系统类型。
进行OGTT实验时,下述哪种情况有助于糖尿病的诊断
日晡热甚,伴有腹胀腹痛,大便秘结者属于
下列属实热证的是
下列分析和预测经济波动的指标中,属于滞后指标的有()。
老年人拥有从国家与社会获得生活保障的权利,其中()是指老年人有从国家与社会获得医疗照顾的权利。
外国人杰瑞在A市涉嫌危害国家安全犯罪,其女友林某因作证而面临人身安全危险。公安机关对林某应采取的正确保护措施有:
2,6,12,22,40,(),140。
Theideathatmusicmakesyousmarterhasreceivedconsiderableattentionfromscholarsandthemedia.Currentinterestin【C1】__
IP地址块59.67.159.0/26、59.67.159.64/26和59.67.159.128/26聚合后可用的地址数为()。
最新回复
(
0
)