首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 的一个基础解系为:(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T. 试写出线性方程组的通解,并说明理由.
已知线性方程组 的一个基础解系为:(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T. 试写出线性方程组的通解,并说明理由.
admin
2018-08-12
47
问题
已知线性方程组
的一个基础解系为:(b
11
,b
12
,…,b
1,2n
)
T
,(b
21
,b
22
,…,b
2,2n
)
T
,…,(b
n1
,b
n2
,…,b
n,2n
)
T
.
试写出线性方程组
的通解,并说明理由.
选项
答案
记方程组(Ⅰ)、(Ⅱ)的系数矩阵分别为A、B,则可以看出题给的(Ⅰ)的基础解系中的n个向量就是的n个行向量的转置向量.因此,由(Ⅰ)的基础解系可知 AB
T
=O 转置即得BA
T
=0 因此可知A
T
的n个列向量——即A的n个行向量的转置向量都是方程组(Ⅱ)的解向量. 由于B的秩为n(B的行向量组线性无关),故(Ⅱ)的解空间的维数为2n-r(B)=2n-n=n,所以(Ⅱ)的任何n个线性无关的解就是(Ⅱ)的一个基础解系.已知(Ⅰ)的基础解系含n个向量,即2n-r(A)=n,故r(A)=n,于是可知A的n个行向量线性无关,从而它们的转置向量构成(Ⅱ)的一个基础解系,因此(Ⅱ)的通解为 y=c
1
(a
11
,a
12
,…,a
1,2n
)
T
+c
2
(a
21
,a
22
,…,a
2,2n
)
T
+…+c
n
(a
n1
,a
n2
,…,a
n,2n
)
T
其中c
1
,c
2
,…,c
n
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/81j4777K
0
考研数学二
相关试题推荐
设u=u(x,y)二阶连续可偏导,且,若u(x,3x)=x,u’x(x,3x)=x3,则u"xy(x,3x)=_______
设y’=arctan(x-1)2,y(0)=0,求∫01y(x)dx
=_______
设f(x)二阶可导,f(0)=0,令g(x)=讨论g’(x)在x=0处的连续性.
设A,B为n阶正定矩阵.证明:A+B为正定矩阵.
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r()=r
设a>0,讨论方程aex=x2根的个数.
假设.求A的所有代数余子式之和.
求二重积分其中D是由曲线直线y=2,y=x所围成的平面区域.
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并且满足xf’(x)=(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积值为2.求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小.
随机试题
关于方差分析以下错误的一项为
法的制定的程序即立法程序,是指()。
建设工程项目施工质量保证体系的主要内容有()。
中央预算的调整方案必须提请()审查和批准。
小唐在学期末复习数学的时候,会把这个学期所学的所有数学知识点写成提纲,从而帮助自己复习。这属于学习策略中的()。
以下是对中国文化艺术的文言别称,属于美术的是()。
下列句子中没有语病的一项是()。
第十二届全国人民代表大会第三次会议政府工作报告中看点众多,精彩纷呈。为了更好地宣传大会精神,新闻编辑小王需制作一个演示文稿,素材放于考生文件夹下的“文本素材.docx”及相关图片文件,具体要求如下:第1张幻灯片为标题幻灯片,标题为“图解今年年施政要
A、Talkingonthetelephone.B、Vacuumingthebathroom.C、Rollingtherocks.D、Listeningtomusic.D语义理解题。女士说可以理解欣赏摇滚乐时需要把音量调高,可是你
IntheUnitedStatesthescienceofclimatechangestillremainsacontroversialissue.Partoftheproblemsisthatitiscompl
最新回复
(
0
)