首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 的一个基础解系为:(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T. 试写出线性方程组的通解,并说明理由.
已知线性方程组 的一个基础解系为:(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T. 试写出线性方程组的通解,并说明理由.
admin
2018-08-12
29
问题
已知线性方程组
的一个基础解系为:(b
11
,b
12
,…,b
1,2n
)
T
,(b
21
,b
22
,…,b
2,2n
)
T
,…,(b
n1
,b
n2
,…,b
n,2n
)
T
.
试写出线性方程组
的通解,并说明理由.
选项
答案
记方程组(Ⅰ)、(Ⅱ)的系数矩阵分别为A、B,则可以看出题给的(Ⅰ)的基础解系中的n个向量就是的n个行向量的转置向量.因此,由(Ⅰ)的基础解系可知 AB
T
=O 转置即得BA
T
=0 因此可知A
T
的n个列向量——即A的n个行向量的转置向量都是方程组(Ⅱ)的解向量. 由于B的秩为n(B的行向量组线性无关),故(Ⅱ)的解空间的维数为2n-r(B)=2n-n=n,所以(Ⅱ)的任何n个线性无关的解就是(Ⅱ)的一个基础解系.已知(Ⅰ)的基础解系含n个向量,即2n-r(A)=n,故r(A)=n,于是可知A的n个行向量线性无关,从而它们的转置向量构成(Ⅱ)的一个基础解系,因此(Ⅱ)的通解为 y=c
1
(a
11
,a
12
,…,a
1,2n
)
T
+c
2
(a
21
,a
22
,…,a
2,2n
)
T
+…+c
n
(a
n1
,a
n2
,…,a
n,2n
)
T
其中c
1
,c
2
,…,c
n
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/81j4777K
0
考研数学二
相关试题推荐
,求极大线性无关组,并把其余向量用极大线性无关组线性表出.
∫sin3xcosxdx=_______.
证明:当x≥0时,f(x)=∫0x(t-t2)sin2ntdt的最大值不超过
设f(x)在x=a处二阶可导,证明:
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
设向量组α1,α2,α3线性无关,且α1+aα2+4α3,2a1+α2-α3,α2+α3线性相关,则a=_______
设函数f(x)∈C[a,b],且f(x)>0,D为区域a≤x≤b,a≤y≤b.证明:
在球面x2+y2+z2=5R2(x>0,y>0,z>0)上,求函数f(x,y,z)=lnx+lny+3lnz的最大值,并利用所得结果证明不等式(a>0,b>0,c>0).
设(X,Y)服从二维正态分布,则随机变量ξ=X+Y与η=X—Y不相关的充分必要条件是()
设四元齐次线性方程组(1)为而已知另一四元齐次线性方程组(2)的一个基础解系为α1=(2,一1,a+2,1)T,α2=(一1,2,4,a+8)T.(I)求方程组(1)的一个基础解系;(Ⅱ)当a为何值时,方程组(1)与(2)有非零公共解?若有,求出所有非
随机试题
成功接案后就进入社会工作助人过程的下一阶段,即()。
企业自建服务器主要考虑的内容有
A.少量血胸B.血胸并发感染C.大量血胸D.血胸机化胸部外伤后,呼吸、血压、脉搏正常,X线检查示肋膈角消失,应诊断为
体现“甘温除热法”的方剂有
慢性肺心病最常见的病因为
水泥管道整体铺设完成,在()进行试通。
背景某拟建工程由甲、乙、丙三个施工过程组成;该工程共划分成四个施工流水段,每个施工过程在各个施工流水段上的流水节拍如下表所示。按相关规范规定,施工过程乙完成后其相应施工段至少要养护2d,才能进入下道工序。为了尽早完工,经过技术攻关,实现施工过程乙在施工过
()不属于软件需求规格要求说明的内容。
重度上皮异常增生的疾病是()。
A、正确B、错误B
最新回复
(
0
)