首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(03)已知平面上三条不同直线的方程分别为 l1:ax+2by+3c=0,l2:bx+2cy+3a=0,l3:cx+2ay+3b=0 试证这三条直线交于一点的充分必要条件为a+b+c=0.
(03)已知平面上三条不同直线的方程分别为 l1:ax+2by+3c=0,l2:bx+2cy+3a=0,l3:cx+2ay+3b=0 试证这三条直线交于一点的充分必要条件为a+b+c=0.
admin
2018-08-01
48
问题
(03)已知平面上三条不同直线的方程分别为
l
1
:ax+2by+3c=0,l
2
:bx+2cy+3a=0,l
3
:cx+2ay+3b=0
试证这三条直线交于一点的充分必要条件为a+b+c=0.
选项
答案
必要性 设三直线交于一点(
0
,y
0
),则[x
0
,y
0
,1]
T
为方程组Ax=0的非零解,其中矩阵 [*] 于是有|A|=0,而 |A|=[*]=-6(a+b+c)[a
2
+b
2
+c
2
-ab-bc-ac] =-3(a+b+c)[(a-b)
2
+(b-c)
2
+(c-a)
2
] 但(a-b)
2
+(b-c)
2
+(c-a)
2
≠0,故得a+b+c=0. 充分性 设a+b+c=0.考虑线性方程组 [*] 对其增广矩阵作初等行变换,得 [*] 可知方程组(*)等价于方程组 [*] 因为[*]=2(ac-b
2
) (将c=-a-b代入) =-2[a(a+b)+b
2
]=-[a
2
+b
2
+(a+b)
2
]≠0. 故方程组(**)有惟一解,所以方程组(*)有惟一解,即三直线l
1
,l
2
,l
3
交于一点.
解析
转载请注明原文地址:https://kaotiyun.com/show/82j4777K
0
考研数学二
相关试题推荐
设函数f(u)有连续的一阶导数,f(0)=1,且函数满足求z的表达式.
(2007年试题,一)设向量组α1,α2,α3线性无关,则下列向量组线性相关的是().
设非齐次线性方程组有三个线性无关解α1,α2,α3,(Ⅰ)证明系数矩阵的秩r(A)=2;(Ⅱ)求常数a,b及通解.
设二次型f(x1,x2,x3)在正交变换x=Py下的标准形为其中P=(e1,e2,e3).若Q=(e1,一e3,e2),则f(x1,x2,x3)在正交变换x=Qy下的标准形为
设f(x)连续,证明:∫0x[∫0tf(u)du]dt=∫0xf(t)(x-t)dt.
曲线r=eθ在θ=π/2处的切线方程为_______·
设非负函数f(x)当x≥0时连续可微,且f(0)=1.由y=f(x),x轴,y轴及过点(x,0)且垂直于x轴的直线围成的图形的面积与y=f(x)在[0,x]上弧的长度相等,求f(x).
设f(x)为二阶可导的偶函数,f(0)=1,f"(0)=2且f"(x)在x=0的邻域内连续,则=_______
设曲线y=,过原点作切线,求此曲线、切线及x轴所围成的平面图形绕x轴旋转一周所成的旋转体的表面积.
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
随机试题
生产药品所需的原料、辅料,必须符合()
下列房源中,()是面向中低收入者提供的普通住房。
《建设工程工程量清单计价规范》中采用的综合单价为()。工程量清单编制的依据为()。
与1998年《证券法》相比,2005年《证券法》主要修订的内容有( )。
某公司于2015年3月2日以竞价方式承受土地使用权用于房地产开发。根据国有土地转让合同,需缴纳土地转让金2000万元,需上缴土地补偿费200万元,于4月3日办讫国有土地使用权证。当年因国家政策调整,重新修订土地使用权出让合同。补交土地出让金600万元。另向
招标采购被废标后,采购人应当将废标理由通知所有投标人,无需当重新组织招标的情形是()。
有关物业服务合同的法律特征,以下表述正确的有()。
随着世界经济与社会的发展,学校教育内容和规模不断增扩,为提高教学效率,培养更多的实用人才,班级授课制出现并被推广应用。中国正式采用班级授课制是在()。
关于IP组播的描述中,错误的是()。
PassageThreeWhatdothetwocoinagesinPara.4show?
最新回复
(
0
)