首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。证明对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1)。
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。证明对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1)。
admin
2017-12-29
76
问题
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。证明对任何a∈[0,1],有∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1)。
选项
答案
设 F(x)=∫
0
x
g(t)f’(t)dt+∫
0
1
f(t)g’(t)dt一f(x)g(1), 则F(x)在[0,1]上的导数连续,并且 F’(x)= g(x).f’(x)—f’(x)g(1)=f’(x)[g(x)一g(1)]。 由于x∈[0,1]时,f’(x)≥0,g’(x)≥0,因此F’(x)≤0,即F(x)在[0,1]上单调递减。 注意到 F(1)=∫
0
1
g(t)f’(t)dt +∫
0
1
(t)g’(t)dt —f(1)g(1),故 F(1)=0。 因此x∈[0,1]时,F(x)≥F(1)=0,由此可得对任何a∈[0,1],有 ∫
0
a
g(x)f’(x)dx+f(x)g’(x)dx≥f(a)g(1)。 ∫
0
a
g(x)f’(x)dx =g(x)f’(x)|
0
a
一∫
0
a
f(x)g’(x)dx =f(a)g(a)一 ∫
0
a
f(x)g’(x)dx, ∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x) dx =f(a)g(a)一∫
0
a
f(x)g’(x)dx+∫
0
1
f(x)g’(x)dx = f(a)g(a)+∫
a
1
f(x)g’(x)dx, 由于x∈[0,1]时,g’(x)≥0,因此 f(x)g’(x)≥f(a)g’(x),x∈[a,1], ∫
a
1
f(x)g’(z)dx≥∫
0
1
f(a)g’(x)dx=f(a)[g(1)—g(a)], 从而 ∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(a)+f(a)[g(1) —g(a)]=f(a)g(1)。
解析
转载请注明原文地址:https://kaotiyun.com/show/8GX4777K
0
考研数学三
相关试题推荐
设A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式,证明下列结论:aij=AijATA=E且|A|=1;
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,一1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
设线性线性方程组λ为何值时,方程组有解,有解时,求出所有的解.
f(x)在(一∞,+∞)上连续,=+∞,且f(x)的最小值f(x0)<x0,证明:f(f(x))至少在两点处取得最小值.
利用列维一林德伯格定理,证明:棣莫弗一拉普拉斯定理.
求微分方程y"+2y’+2y=2e-xcos2的通解.
计算不定积分
求下列极限.
证明:f(x,y)=Ax2+2Bxy+Cy2在约束条件g(x,y)=下有最大值和最小值,且它们是方程k2一(Aa2+Cb2)k+(AC—B2)a2b2=0的根.
微分方程y"+2y’+2y=e-xsinx的特解形式为()
随机试题
()往往发生在焊接结构中应力集中最严重的情况。
负责非处方药目录审批和发布的部门是
频发早搏的心律失常患者,不可饮用浓茶的目的主要是避免
下列关于管道系统液压试验实施要点的说法中,正确的是()。
背景××施工单位承揽了我国西北某机场场道第3标段的土方工程,施工工期为2016年5月1日至10月31日。计划工程量及工程预算费用见下表:截至8月底,各月工程实际进展统计见下表:计算该工程8月底的进度偏差。
银行业金融机构违反审慎经营规则逾期未改正的,或者其行为严重危害该银行业金融机构的稳健运行、损害存款人和其他客户合法权益的,经国务院银行业监督管理机构或者其省一级派出机构负责人批准,可以区别情形,采取下列哪些措施?()
甲亢营养治疗中应适当补充________、________和________等矿物质。
知识的急速增长要求人们学会学习,()比知识教育更重要。方法教育比结论教育更重要。
有三个关系R、S和T如下:由关系R和S通过运算得到关系T,则所使用的运算为
Thisnumberwascut__________(百分之七十五)--frommorethan000piecestoabout1100pieces.
最新回复
(
0
)