设f(x)在[0,1]上有连续导数,且f(0)=0.试证明:至少存在一点η∈[0,1],使f′(η)=2f(x)dx.

admin2016-01-25  51

问题 设f(x)在[0,1]上有连续导数,且f(0)=0.试证明:至少存在一点η∈[0,1],使f′(η)=2f(x)dx.

选项

答案因为f′(x)在[0,1]上连续,所以函数f′(x)在[0,1]上有最值. 设其最大值与最小值分别为M和m,即有 m≤f′(x)≤M,x∈[0,1]. 又由拉格朗日中值定理有 f(x)=f(x)一f(0)=xf′(ξ), 则 2[*]xf′(ξ)dx. 因m≤f′(ξ)≤M,故 xm≤xf′(ξ)≤xM (因x>0), 所以 2mx≤2xf′(ξ)≤2xM. [*] 对f′(x)使用介值定理,得到至少存在一点η∈[0,1],使 f′(η)=2[*]f(x)dx.

解析 因f′(x)在[0,1]上连续,如能证明2f(x)dx在函数f′(x)的最大值与最小值之间,对f′(x)在[0,1]上使用介值定理,问题得证.为要产生导数f′(η),注意到f(0)=0,可先使用拉格朗日中值定理.
转载请注明原文地址:https://kaotiyun.com/show/8KU4777K
0

相关试题推荐
最新回复(0)