首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上有连续导数,且f(0)=0.试证明:至少存在一点η∈[0,1],使f′(η)=2f(x)dx.
设f(x)在[0,1]上有连续导数,且f(0)=0.试证明:至少存在一点η∈[0,1],使f′(η)=2f(x)dx.
admin
2016-01-25
76
问题
设f(x)在[0,1]上有连续导数,且f(0)=0.试证明:至少存在一点η∈[0,1],使f′(η)=2
f(x)dx.
选项
答案
因为f′(x)在[0,1]上连续,所以函数f′(x)在[0,1]上有最值. 设其最大值与最小值分别为M和m,即有 m≤f′(x)≤M,x∈[0,1]. 又由拉格朗日中值定理有 f(x)=f(x)一f(0)=xf′(ξ), 则 2[*]xf′(ξ)dx. 因m≤f′(ξ)≤M,故 xm≤xf′(ξ)≤xM (因x>0), 所以 2mx≤2xf′(ξ)≤2xM. [*] 对f′(x)使用介值定理,得到至少存在一点η∈[0,1],使 f′(η)=2[*]f(x)dx.
解析
因f′(x)在[0,1]上连续,如能证明2
f(x)dx在函数f′(x)的最大值与最小值之间,对f′(x)在[0,1]上使用介值定理,问题得证.为要产生导数f′(η),注意到f(0)=0,可先使用拉格朗日中值定理.
转载请注明原文地址:https://kaotiyun.com/show/8KU4777K
0
考研数学三
相关试题推荐
纵观道德发展的历史,进步与落后、善良与邪恶、顺利与曲折交织其中,使得数千年来的道德现象纷繁复杂、矛盾重重。但是,不管这个进程多么复杂,人类道德的发展是一个曲折上升的历史过程。道德进步的主要表现是
2020年1月3日,习近平总书记主持召开中央财经委员会第六次会议,研究黄河流域生态保护和高质量发展问题、推动成渝地区双城经济圈建设问题。习近平在会上发表重要讲话并强调,黄河流域必须下大气力进行大保护、大治理,走生态保护和高质量发展的路子。黄河流域必须下大气
2020年9月8日,商务部前部长陈德铭在“服务业扩大开放暨企业全球化论坛”上发言表示,经历了抗疫的洗礼和反思,全球价值链会趋向短链化和区域化,推动经济增长的生产力将更多地依靠科技进步,一个数字化、网络化的智能社会将势不可挡。未来,中国将更注重科技人才,加紧
习近平指出:“照抄照搬他国的政治制度行不通,会水土不服,会画虎不成反类犬,甚至会把国家前途命运葬送掉。只有扎根本国土壤、汲取充沛养分的制度,才最可靠、也最管用。”新中国成立70多年的实践充分证明,中国特色社会主义政治制度具有强大生命力,中国特色社会主义政治
将13个分别写有A、A、A、C、E、H、I、I、M、M、N、T、T的卡片随意地排成一行,求恰好排单词“MATHEMATICIAN”的概率.
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:(1)t为何值时,向量组α1,α2,α3线性相关?(2)t为何值时,向量组α1,α2,α3线性无关?
设向量组α1,α3,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
求下列函数的n阶导数的一般表达式:(1)y=xn+a1xn-1+a2xn-2+…+an-1x+an(a1,a2,…,an都是常数);(2)y=sin2x;(3)y=x-1/x+1;(4)y=ln1+x/1-x.
假设随机变量U在区间[-2,2]上服从均匀分布,随机变量试求:(I)X和Y的联合概率分布;(Ⅱ)D(X+Y).
设z=(x2+y2)earctan(y/x),求dz与
随机试题
氨吸收式制冷过程中,从发生器中蒸发出来的氨先进入(),凝结成液体氨后,经节流阀膨胀到蒸发器压力,生成低温湿蒸气。
经1,2-甘油二酯途径合成的甘油磷脂有
下列哪一种检查方法已不用于常规颅脑影像学检查
糖尿病视网膜病变可出现()
有权对拒绝隔离治疗的霍乱病人采取强制措施的机构是()
申请设立中外合作经营企业,审查批准机关应当自收到规定的全部文件之日起( )内,决定批准或者不批准。
下列选项中可能作为施工总承包单位的是()。
《中华人民共和国进境动植物检疫许可证》在( )情况下失效、废止或者终止使用。
三、根据下列资料,回答106—110题。2015年,我国服务贸易进出口总额7130亿美元,比2005年增长3.54倍,年均增长16.3%。其中,出口2881.9亿美元,比2005年增长2.9倍,年均增长11.8%;进口4248.1亿美元,比200
Therearemanymedicalproblemsinthemodernsociety.Oneofthemostalarmingmedicalproblemsintheworldisa【1】diseasenam
最新回复
(
0
)