首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上有连续导数,且f(0)=0.试证明:至少存在一点η∈[0,1],使f′(η)=2f(x)dx.
设f(x)在[0,1]上有连续导数,且f(0)=0.试证明:至少存在一点η∈[0,1],使f′(η)=2f(x)dx.
admin
2016-01-25
51
问题
设f(x)在[0,1]上有连续导数,且f(0)=0.试证明:至少存在一点η∈[0,1],使f′(η)=2
f(x)dx.
选项
答案
因为f′(x)在[0,1]上连续,所以函数f′(x)在[0,1]上有最值. 设其最大值与最小值分别为M和m,即有 m≤f′(x)≤M,x∈[0,1]. 又由拉格朗日中值定理有 f(x)=f(x)一f(0)=xf′(ξ), 则 2[*]xf′(ξ)dx. 因m≤f′(ξ)≤M,故 xm≤xf′(ξ)≤xM (因x>0), 所以 2mx≤2xf′(ξ)≤2xM. [*] 对f′(x)使用介值定理,得到至少存在一点η∈[0,1],使 f′(η)=2[*]f(x)dx.
解析
因f′(x)在[0,1]上连续,如能证明2
f(x)dx在函数f′(x)的最大值与最小值之间,对f′(x)在[0,1]上使用介值定理,问题得证.为要产生导数f′(η),注意到f(0)=0,可先使用拉格朗日中值定理.
转载请注明原文地址:https://kaotiyun.com/show/8KU4777K
0
考研数学三
相关试题推荐
导盲犬的历史可以追溯到19世纪初。1819年,一个叫海尔·约翰的人在维也纳创办了世界上第一个导盲犬训练机构。后来海尔·约翰还出版了一本小册子详细描述了该机构的工作,但在当时这个项目并没有被世人广泛知晓。大约100年之后的人们才开始重视导盲犬的价值,原因是在
休谟认为真理是“观念与主体感觉相符合”,贝克莱断言“真理存在于观念之中”,康德认为“真理是思维与它的先验形式相一致”。这些观点的错误之处在于否认了
列宁认为:“从生动的直观到抽象的思维,并从抽象的思维到实践,这就是认识真理、认识客观实在的辩证途径。”认识的过程首先是从实践到认识的过程,在这个过程中
曾国藩说:“少年经不得顺境。”文学家古龙说:“一个人在少年得意,未必是福,而少年时的折磨,却往往使得日后能有更大的成就。”这两句话对我们辩证看待人生矛盾,树立正确顺逆观的启示是
某电子产品加工厂在暑假期间雇用了大量暑期工,使得支付劳动者薪酬的投入升高,也使得预付资本提高。预付资本中发生变动的是
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
求下列函数的极值:(1)f(x,y)=6(x-x2)(4y-y2);(2)f(x,y)=e2x(x+y2+2y);(4)f(x,y)=3x2y+y3-3x2-3y2+
求方程karctanx-x=0不同实根的个数,其中k为参数.
设X,Y是相互独立的随机变量,其分布函数分别为FY(x)、FY(y),则Z=min(X,Y)的分布函数是().
随机试题
甲、乙、丙、丁共有一辆货车,甲占该车70%的份额,乙、丙、丁各占10%的份额。现甲欲将该车作抵押向某银行贷款10万元。如果各共有人事先对此未作约定,则下列说法中正确的是()。
简述接入控制的功能。
组织间沟通
中华田园犬,雄性,3岁,15kg,免疫史不详,5日前外出时左侧股部被刺伤,患犬牙关紧闭,吞咽困难,流涎,头颈伸直,背腰僵硬,四肢强直,状如木马。创伤部位分离出革兰阳性厌氧梭菌。患犬的综合治疗措施不包括
取头顶、项部以及上背部的腧穴,患者应取的体位为
下列经济行为中,不符合印花税政策规定的是()。
研究表明,快、慢肌特征的区分方法不正确的是()。
Ifyouknowexactlywhatyouwant,thebestroutetoajobistogetspecializedtraining.Arecentsurveyshowsthatcompanies
设向量组α1,α2,α3线性无关,β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数k,必有().
A、Thirstyplants.B、Well-wateredplants.C、Quietplants.D、Healthyplants.A
最新回复
(
0
)