首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在(a,b)二阶可导,χ1,χ2∈(a,b),χ1≠χ2,t∈(0,1),则 (Ⅰ)若f〞(χ)>0(χ∈(a,b)),有 f[tχ1+(1-t2)χ2]<tf(χ1)+(1-t)f(χ2), (4.6) 特别有
设f(χ)在(a,b)二阶可导,χ1,χ2∈(a,b),χ1≠χ2,t∈(0,1),则 (Ⅰ)若f〞(χ)>0(χ∈(a,b)),有 f[tχ1+(1-t2)χ2]<tf(χ1)+(1-t)f(χ2), (4.6) 特别有
admin
2016-10-21
74
问题
设f(χ)在(a,b)二阶可导,
χ
1
,χ
2
∈(a,b),χ
1
≠χ
2
,
t∈(0,1),则
(Ⅰ)若f〞(χ)>0(
χ∈(a,b)),有
f[tχ
1
+(1-t
2
)χ
2
]<tf(χ
1
)+(1-t)f(χ
2
), (4.6)
特别有
(Ⅱ)若f〞(χ)<0(
χ∈(a,b)),有
f[tχ
1
+(1-t)χ
2
]>tf(χ
1
)+(1-t)f(χ
2
), (4.7)
特别有
选项
答案
(Ⅰ)与(Ⅱ)的证法类似,下面只证(Ⅰ).因f〞(χ)>0(χ∈(a,b))[*]f(χ)在(a,b)为凹的[*](4.5)相应的式子成立.注意tχ
1
+(1-t)χ
2
∈(a,b)[*] f(χ
1
)>[tχ
1
+(1-t)χ
2
]+f′[tχ
1
+(1-t)χ
2
][χ-(tχ
1
+(1-t)χ
2
)] =f[tχ
1
+(1-t)χ
2
]+f′[tχ
1
+(1-t)χ
2
](1-t)(χ
1
-χ
2
), f(χ
2
)>f[tχ
1
+(1-t)χ
2
]+f′[tχ
1
+(1-t)χ
2
][χ
2
-(tχ
1
+(1-t)χ
2
)] =f[tχ
1
+(1-t)χ
2
]-f′[tχ
1
+(1-t)χ
2
]t(χ
1
-χ
2
), 两式分别乘t与(1-t)后相加得 tf(χ
1
)+(1-t)f(χ
2
)>f[tχ
1
+(1-t)χ
2
].
解析
转载请注明原文地址:https://kaotiyun.com/show/8Pt4777K
0
考研数学二
相关试题推荐
[*]
求极限
设f(x)=a1ln(1+x)+a2ln(1+2x)+…+anln(1+nx),其中a1,a2,…,an,为常数,且对一切x有|f(x)|≤|ex-1|.证明:|a1+2a2+…+nan|≤1.
设f(x)=∫0tanxarctant2dt,g(x)=x-sinx,当x→0时,比较这两个无穷小的关系.
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数)证明:∫-aaf(x)g(x)dx=A∫0ag(x)dx
设f(x)在[0,+∞)上连续,且∫01f(x)dx<-,证明:至少存在一个ξ∈(0,+∞),使得f(ξ)+ξ=0
设函数f(x)在[a,b]上具有连续的二阶导数,证明:在(a,b)内存在一点ξ,使得∫abf(x)dx=(b-a)(b-a)3f"(ξ)①
设函数f(u)具有二阶连续导数,而z=f(exsiny)满足方程=e2xz,求f(u).
设矩阵A与B相似,且求a,b的值;
随机试题
下列哪个算法是选择最早装入内存的页作为被替换的页()
下列哪项不符合.TIA的临床表现
关于主要诊断的取舍,下列错误的是
既能清心镇惊,又能安神解毒的药物是()。
某施工单位承接一项大型工业安装工程。工程范围:主厂房由五连跨组成,安装包含各专业。施工单位及时组建了项目部。项目部在进行工程质量检验评定划分时,将3台大型机械设备安装工程划为一个单位工程;考虑电气工程的复杂性,将整个主厂房的电气工程划为一个单位工程;将
跳舞大妈经常在你所在社区的广场上跳广场舞,周围居民与跳舞大妈出现冲突,你是负责调解处理本次纠纷的工作人员,你怎么做?
历史学家们认为:“17世纪后期科学革命的胜利为启蒙运动提供了先决条件。”据此判断,启蒙运动在科学思想方面最重要的先驱者是:
【府院之争】南京师范大学2011年中国近现代史复试真题;湖南师范大学2015年中国史综合真题;南开大学2015年中国历史真题;南开大学2016年中国历史真题;华中师范大学2017年中国史基础真题
夸美纽斯创立的教学原则体系述评。
[*]
最新回复
(
0
)