设f(x)为连续函数,证明: ∫02πf(|sinx|)dx=4∫0π/2f(sinx)dx.

admin2021-11-09  32

问题 设f(x)为连续函数,证明:
0f(|sinx|)dx=4∫0π/2f(sinx)dx.

选项

答案0f(|sinx|)dx=∫πf(|sinx|)dx=2∫0πf(|sinx|)dx=2∫0πf(sinx)dx=4∫0π/2f(sinx)dx.

解析
转载请注明原文地址:https://kaotiyun.com/show/8ry4777K
0

最新回复(0)