首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[1,+∞)内可导,f’(x)<0且=a>0,令an=-.证明:{an}收敛且0≤≤f(1).
设f(x)在[1,+∞)内可导,f’(x)<0且=a>0,令an=-.证明:{an}收敛且0≤≤f(1).
admin
2015-07-24
44
问题
设f(x)在[1,+∞)内可导,f’(x)<0且
=a>0,令a
n
=
-
.证明:{a
n
}收敛且0≤
≤f(1).
选项
答案
因为f’(x)<0,所以f(x)单调减少. 又因为a
n+1
一a
n
=f(n+1)一[*]=f(n+1)一f(ξ)≤0(ξ∈[n,n+1), 所以{a
n
}单调减少. 因为a
n
=[*][f(k)-f(x)]dx+f(n),而[*][f(k)-f(x)]dx≥0(k=1,2,…,n-1) 且[*]=a>0,所以存在X>0,当x>X时,f(x)>0. 由f(x)单调递减得f(x)>0(x∈[1,+∞)),故a
n
≥f(n)>0,所以[*]存在. 由a
n
=f(1)+[*], 而f(k)一[*]≤0(k=2,3,…,n),所以a
n
≤f(1),从而0≤[*]≤f(1).
解析
转载请注明原文地址:https://kaotiyun.com/show/92w4777K
0
考研数学一
相关试题推荐
设f(x)在[1,2]上连续,在(1,2)内可导,且f(x)≠0(1<x<2),又存在且非零,证明:存在ξ∈(1,2),使得ln2/∫12f(t)dt=1/ξf(ξ).
设f(x)在[a,b]上连续,在(a,b)内可导(α>0),且f(a)=0.证明:存在ξ∈(a,b),使得f(ξ)=(b-ξ)/af’(ξ).
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得[f(b)-f(ξ)]/(lnξ-lna)=ξf’(ξ).
设f(x)二阶可导,,f(1)=1,证明:存在ξ∈(0,1),使得f"(、ξ)-f’(ξ)+1=0.
确定常数a,b,c的值,使=4.
早晨开始下雪整天不停,中午一辆扫雪车开始扫雪,每小时扫雪体积为常数,到下午2点扫雪2km,到下午4点又扫雪1km,问降雪是什么时候开始的?
设变换可把方程=0简化为=0,求常数a.
设f(x)连续可导,f(0)=0,f’(0)≠0,F(x)=(x2-t2)f(t)dt,且当x→0时,F’(x)与xk为同阶无穷小,求k.
设对一切的x,有f(x+1)=—2f(x),且当x∈[0,1]时f(x)=x(x2一1),讨论函数f(x)在x=0处的可导性。
随机试题
在PowerPoint2010中,下列说法中错误的是________。
下列病毒属DNA病毒的是
抑制环加氧酶的药物是抑制HMG+CoA还原酶的药物是
在地震基本烈度为8度的场区修建一座桥梁,场区地下水位埋深5m,场地土为:0~5m:非液化黏性土5~15m:松散均匀的粉砂15m以下为密实中砂按《公路和工程抗震设计规范》(JTJ004—89)计算,判别深度为5~15m的粉砂层为
如果单体设备调试的进度目标不能实现,势必影响设备工程( ),延迟设备工程的移交时间。
背景资料:某拦河闸工程最大过闸流量为520m3/s,工程施工采用一次拦断河床围堰导流,围堰断面和地基情况如下图所示。施工过程中发生如下事件:事件1:依据水利部“关于贯彻落实《国务院关于坚持科学发展安全发展促进安全生产形势持续稳定
下列属于交易所交易的衍生工具的是()。
保本基金的投资目标是在锁定下跌风险的同时力争有机会获取潜在的高回报。()
下列关于利用可比公司法确定债务资本成本计算的表述,正确的有()。
设n阶实对称矩阵A满足条件A2+6A+8E=O,且A+tE是正定矩阵,则t的取值范围为_______.
最新回复
(
0
)