首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=O,求线性方程组Ax=0的通解。
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=O,求线性方程组Ax=0的通解。
admin
2021-11-09
75
问题
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=
(k为常数),且AB=O,求线性方程组Ax=0的通解。
选项
答案
由AB=O知,B的每一列均是Ax=0的解,且r(A)+r(B)≤3。 若k≠9,则r(B)=2,于是r(A)≤l,显然r(A)≥1,故r(A)=1。可见此时Ax=0的基础解系所含解向量的个数为3一r(A)=2,矩阵B的第一列、第三列线性无关,可作为其基础解系,故 Ax=0的通解为:x=k
1
(1,2,3)
T
+k
2
(3,6,k)
T
,k
1
,k
2
为任意常数。 若k=9,则r(B)=1,从而1≤r(A)≤2。 ①若r(A)=2,则Ax=0的通解为:x=k
1
(1,2,3)
T
,k
1
为任意常数。 ②若r(A)=1,则Ax=0的同解方程组为:ax
1
+bx
2
+cx
3
=0,不妨设a≠0,则其通解为 x=k
1
([*],1,0)
T
+k
2
([*],0,1)
T
,k
1
,k
2
为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/ouy4777K
0
考研数学二
相关试题推荐
设D=.(1)计算D;(2)求M31+M33+M34.
设f(χ)=,χ∈[,1),试补充定义使得f(χ)在[,1]上连续.
设a1=1,a2=2,3an+2-4an+1+an=0,n=1,2,…,求an.
f(χ)在[-1,1]上连续,则χ=0是函数g(χ)=的().
设二次型f(χ1,χ2,χ3)=XTAX,tr(A)=1,又B=且AB=O.(1)求正交矩阵Q,使得在正交变换X=QY下二次型化为标准形;(2)求矩阵A.
设z=f(eχsiny,χy),其中f二阶连续可偏导,求.
设f(x)=,求f(x)的间断点并判断其类型。
曲线上对应于t=﹣1的点处的曲率半径是__________。
设方程组有通解k1ξ1+k2ξ2=k1[1,2,1,一1]T+k2[0,一1,一3,2]T.方程组有通解λ1η1+λ2η2=λ1[2,一1,一6,1]T+λ2[一1,2,4,a+8]T.已知方程组有非零解,试确定参数a的值,并求该非零解.
设y=y(x)满足方程作自变量替换则y作为t的函数满足的微分方程微分方程是_________。
随机试题
机关、团体、部队和企事业单位因特殊需要必须租用城市私有房屋时,必须经()批准。
公共关系广告的重要作用是()
阅读下列短文,回答有关问题。阳光的香味林清玄我遇见一位年轻的农夫,在南方一个充满阳光的小镇。那时是春末,一季稻谷刚刚收成,春日阳光的金
《中华人民共和国药典》所用药筛工业筛目数(孔/英寸),下列错误者为
某女,35岁。广州某医院护土,2003年4月3日救治不明原因肺炎患者后,开始出现发热,体温39.5℃,头痛、乏力。查:血常规4.12×109/L。胸片示双肺无异常发现。此患者的诊断是
患者张某,女性,70岁,因脑出血昏迷入院,入院时患者体温38℃,脉搏100次/分,R30次/分,血压200/120mmHg。经药物治疗后血压降160/90mmHg,仍处于昏迷状态。现需鼻饲饮食。应采取的措施是()
甲公司是一家在上海证券交易所挂牌交易的制造类企业,有关股权投资业务如下:(1)2015年1月1日,甲公司以银行存款3000万元从非关联方处取得乙公司60%的股权,能够对乙公司实施控制。当日乙公司可辨认净资产的账面价值为3920万元(其中,股本1800万元
赵青一定是一位出类拔萃的教练。她调到我们大学执教女排才一年,球队的成绩突飞猛进。以下哪项,如果为真,最有可能削弱上述论证?
设f(x)在上具有连续的二阶导数,且f’(0)=0.证明:存在ξ,η,ω∈使得f’(ξ)=
TheDemocrats’TradeTroublesLastweekHousespeakerNancyPelosiandCongressmanCharlesRangelshowedgenuineleadershipb
最新回复
(
0
)