首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
构造齐次方程组,使得η1=(1,1,0,-1)T,η2=(0,2,1,1)T构成它的基础解系.
构造齐次方程组,使得η1=(1,1,0,-1)T,η2=(0,2,1,1)T构成它的基础解系.
admin
2018-11-23
30
问题
构造齐次方程组,使得η
1
=(1,1,0,-1)
T
,η
2
=(0,2,1,1)
T
构成它的基础解系.
选项
答案
所求AX=0要满足:4维向量η是AX=0的解[*]η可用η
1
,η
2
线性表示. 设η=(c
1
,c
2
,c
3
,c
4
)
T
, [*] 于是η可用η
1
,η
2
线性表示[*]c
2
-c
1
-2c
3
=0, 且c
4
+c
1
-c
3
=0[*]η是齐次方程组[*]的解. 这个齐次方程组满足要求.
解析
转载请注明原文地址:https://kaotiyun.com/show/99M4777K
0
考研数学一
相关试题推荐
设矩阵A=有一个特征值是3,求y,并求可逆矩阵P,使(AP)T(AP)为对角矩阵.
设F(x)为f(x)的原函数,且当x≥0时,f(x)F(x)=,又F(0)=1,F(x)>0,求f(x).
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B。(Ⅰ)证明B可逆;(Ⅱ)求AB-1。
如果用X,Y分别表示将一枚硬币连掷8次正反面出现的次数,则t的一元二次方程t2+Xt+Y=0有重根的概率是______。
设A=(aij)为n阶方阵,证明:对任意的n维列向量X,都有XTAX=0,A为反对称矩阵.
计算(exsiny—y)dx+(excosy一1)dy,其中C为由点A(2a,0)到点B(0,0)的上半圆周(x一a)2+y2=a2(y≥0).
(06年)设A,B为随机事件,且P(B)>0,P(A|B)=1,则必有
已知A,B为两事件,且BA,P(A)=0.3,=()
设X1,X2,…,Xn独立同分布,且Xi(i=1,2,…,n)服从参数为λ的指数分布,则下列各式成立的是()(其中Ф(x)=
设随机变量X与Y分别表示将一枚骰子接连抛两次后出现的点数.试求齐次方程组:的解空间的维数(即基础解系所含向量的个数)的数学期望和方差.
随机试题
根据免职的________,委任制公务员免职可以分为程序性免职和单纯性免职两类。()
Howmanypeoplelosttheirlivesworldwideinemergenciesin2008?
患儿8个月。呕吐、腹泻3天,大便15次/d。皮肤弹性极差,无尿。血清钠140mmol/L。患儿脱水的程度和性质是
属于红黏土地区工程地质测绘和调查应着重查明的内容的有()。
代表不同利益方的项目管理(业主方和项目参与各方)进度控制的( )具有明显的不同。
假设其他因素不变,阶段性增长模式下的股票的投资收益率()。
某食品厂的临时推销员吴某持该厂的介绍信(内容是:兹有我厂推销员吴某到贵公司推销新产品,请予接洽)到外县推销该厂新产品时,恰遇该县的贸易公司新近收购的蔗糖质量好、价格低,于是自作主张以食品厂的名义购进3000斤蔗糖,并将推销款拿出一部分预交了1000元的定
设当x→0时,(1-cosx)ln(1+x2)是比xsinxn高阶的无穷小,而xsinxn是比ex2-1高阶的无穷小,则正整数n等于
下列对IPv6地址表示中,错误的是()。
OneoftheyoungestindependentcountriesintheWesternHemisphere,TrinidadandTobago,becameanationonAugust31,1962.Fo
最新回复
(
0
)