首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知η是Ax=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组Ax=0的基础解系,证明: η,η+ξ1,η+ξ2,…,η+ξn-r是Ax=b的n一r+1个线性无关解;
已知η是Ax=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组Ax=0的基础解系,证明: η,η+ξ1,η+ξ2,…,η+ξn-r是Ax=b的n一r+1个线性无关解;
admin
2014-04-16
47
问题
已知η是Ax=b的一个特解,ξ
1
,ξ
2
,…,ξ
n-r
是对应齐次方程组Ax=0的基础解系,证明:
η,η+ξ
1
,η+ξ
2
,…,η+ξ
n-r
是Ax=b的n一r+1个线性无关解;
选项
答案
[*] A(η+ξ
i
)=Aη=b,i=0,1,2,…,n一r,(其中ξ
0
=0),故η+ξ
i
,i=0,1,2,…,n一r均是Ax=b的解向量.设有数k
0
,k
1
,k
2
,…,k
n-r
,使得k
0
η+k
1
(η+ξ
1
)+k
2
(η+ξ
2
)+…+k
n-r
(η+ξ
n-r
)=0,(*)(*)式左乘A,得k
0
Aη,+k
1
A(η+ξ
1
)+k
2
A(η+ξ
2
)+…+k
n-r
A(η+ξ
n-r
)=0,整理得(k
0
+k
1
+…+k
n-r
)b=0,其中b≠0.故k
0
+k
1
+…+k
n-r
=0,(**)代入(*)式,得k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0.因ξ
1
,ξ
2
,…,ξ
n-r
导一是对应齐次方程组的基础解系,线性无关,得k
i
=0,i=1,2,…,n-r代入(**)式,得k
0
=0,从而有η,η+ξ
1
,η+ξ
2
,…,η+ξ
n-r
是Ax=b的n一r+1个线性无关解向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/9X34777K
0
考研数学二
相关试题推荐
若函数收敛,则k=()
[2006年]设非齐次线性微分方程y’+p(x)y=q(x)有两个不同的解y1(x),y2(x),c为任意常数,则该方程的通解是().
[2002年]设常数则
(16年)已知函数f(χ)满足=2,则f(χ)=_______.
设A为m×n矩阵,则齐次线性方程组AX=0仅有零解的充分条件是()
设函数y=y(x)是微分方程-2y=0的解,且在x=0处y(x)取得极值3,则y(x)=__________.
(2010年)设位于曲线(e≤x<+∞)下方,x轴上方的无界区域为G,则G绕x轴旋转一周所得空间区域的体积为______。
(1998年)设曲线f(x)=xn在点(1,1)处的切线与x轴的交点为(ξn,0),则=______.
设二次型f(x1,x2,x3)=x12+x22+x32-2x12-2x13-2a2x22(a<0)通过正交变换化为标准型2y12+2y22+by32。(Ⅰ)求常数a,b的值;(Ⅱ)求正交变换矩阵;(Ⅲ)当|X|-1时,求二次型
随机试题
下列选项中不属于建构主义典型教学模式的是()
A.C3B.C4C.抗Sm抗体D.CH50SLE睁异性标志性抗体是
用治湿热泻痢、下痢脓血、里急后重等症,首选用哪组药()
患儿,男性,58天,33周早产,出生体重2050g,生后人工喂养,食欲佳,目前检查血红蛋白100g/L,红细胞数2.8×1012/L。护士指导家长对婴儿补充铁剂的时间是
设备监理工程师是指经(),取得注册设备监理工程师执业资格证书,并经注册后,根据设备监理合同从事设备监理业务活动的专业技术人员。
下列关于索赔的说法,不正确的是()。
增值税专用发票只限于()使用。
阅读以下文字,完成下面问题当前中国经济是否过热?对这个问题,国内经济界人士认识不大一致,而且标准也不完全一样。①我认为,当前中国经济运行总体上是正常的,但在部分行业已局部出现过热的苗头。当前的经济加速增长,是多年坚持改革开放的成果,更是
Whyisthemancalling?
A、Shewasgivenaraise.B、Shewasgivenanewjob.C、Shewascriticizedforbeinglate.D、Shewaspraisedforherhardwork.C对
最新回复
(
0
)