首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知两个向量组α1=(1,2,3)T,α2=(1,0,1)T与β1=(-1,2,t)T,β2=(4,1,5)T。 t为何值时,α1,α2与β1,β2等价;
已知两个向量组α1=(1,2,3)T,α2=(1,0,1)T与β1=(-1,2,t)T,β2=(4,1,5)T。 t为何值时,α1,α2与β1,β2等价;
admin
2019-12-24
34
问题
已知两个向量组α
1
=(1,2,3)
T
,α
2
=(1,0,1)
T
与β
1
=(-1,2,t)
T
,β
2
=(4,1,5)
T
。
t为何值时,α
1
,α
2
与β
1
,β
2
等价;
选项
答案
对向量组α
1
,α
2
和β
1
,β
2
所构成的矩阵(α
1
,α
2
,β
1
,β
2
)进行初等行变换化为阶梯形矩阵 [*] 因为α
1
,α
2
与β
1
,β
2
等价,所以r(α
1
,α
2
)=r(β
1
,β
2
),因此t=1。
解析
转载请注明原文地址:https://kaotiyun.com/show/9hD4777K
0
考研数学三
相关试题推荐
a为什么数时二次型x12+3x22+2x32+2ax2x3可用可逆线性变量替换化为2y12一3y22+5y32?
设A是一个可逆实对称矩阵,记Aij是它的代数余子式.二次型f(x1,x2,…,xn)=(1)用矩阵乘积的形式写出此二次型.(2)f(x1,x2,…,xn)的规范形和XTAX的规范形是否相同?为什么?
袋中有8个球,其中有3个白球,5个黑球.现从中随意取出4个球,如果4个球中有2个白球2个黑球,试验停止,否则将4个球放回袋中重新抽取4个球,直至取到2个白球2个黑球为止.用X表示抽取次数,则P{X=k}=______(k=1,2,…).
讨论p,t为何值时,方程组无解?有解?有解时写出全部解.
(1)已知α1,α2为2维列向量,矩阵A=(2α1+α2,α1一α2),B=(α1,α2).若|A|=6,求|B|.(2)α1,α2,α3是线性无关的3维向量组,3阶矩阵A满足Aα1=α1+2α2,Aα2=α2+2α3,Aα3=α3+2α1.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.求作矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B.
①设α1,α2,…,αs和β1,β2,…,βt都是n维向量组,证明r(α1,α2,…,αs,β1,β2,…,βt)≤r(α1,α2,…,αs)+r(β1,β2,…,βt).②设A和B是两个行数相同的矩阵,r(A|B)≤r(A)+r(B).
计算行列式
已知总体X与Y相互独立且都服从标准正态分布,X1,…,X8和Y1,…,Y9是分别来自总体X与Y的两个简单随机样本,其均值分别为求证:服从参数为15的t分布.
设A,B为同阶方阵。若A,B相似,证明A,B的特征多项式相等;
随机试题
自人民法院裁定批准重整计划之日起,下列做法不符合《企业破产法》规定的是()。
Marywentthroughthereportcarefullyto______allspellingmistakesfromit.
男性,75岁。患慢性阻塞性肺疾病20余年,长期门诊复诊。近来行肺功能检查示:FEV1/FVC<70%,30%≤FEV1<50%预计值,血气分析PO250mmHg,PCO260mmHg。查体:T36.8℃,R20次/分,消瘦,神清,稍气促,唇甲轻度发绀,球结
血液性缺氧的主要原因是
下列各项,影响当期利润表中利润总额的有( )。
以下关于政府补助说法正确的是()。
我国发给旅游团团体签证人数要在()人及以上。
资本主义工资的基本形式是:
Cheaplongdistance,theabilitytospoofcallerID(来电显示)andthecreditcrisisarebeingusedtofacilitateascamcalledvishin
关系模式R中若没有非主属性,则
最新回复
(
0
)