首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知η1,η2,η3,η4是齐次方程组Ax=0的基础解系,则下列向量组中也是Ax=0基础解系的是
已知η1,η2,η3,η4是齐次方程组Ax=0的基础解系,则下列向量组中也是Ax=0基础解系的是
admin
2014-07-06
73
问题
已知η
1
,η
2
,η
3
,η
4
是齐次方程组Ax=0的基础解系,则下列向量组中也是Ax=0基础解系的是
选项
A、η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
一η
1
.
B、η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
+η
1
.
C、η
1
+η
2
,η
2
+η
3
,η
3
一η
4
,η
4
一η
1
.
D、η
1
,η
2
,η
3
,η
4
的等价向量组.
答案
A
解析
等价向量组不能保证向量个数相同,因而不能保证线性无关,例如向量组η
1
,η
2
,η
3
,η
4
,η
1
+η
2
与向量组η
1
,η
2
,η
3
,η
4
呀4等价,但前者线性相关,因而不能是基础解系。故D不正确。B,C均线性相关,因此不能是基础解系,故B与C也不正确.注意到:(η
1
+η
2
)一(η
2
一η
3
)一(η
3
一η
4
)一(η
4
+η
1
)=0,(η
1
+η
2
)一(η
2
+η
3
)+(η
3
一η
4
)+(η
4
~η
1
)=0,唯有A,η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
一η
1
是Ax=0的解,义由(η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
一η
1
)=(η
1
,η
2
,η
3
,η
4
)
且
=2≠0,知η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
一η
1
线性无关,且向量个数与η
1
,η
2
,η
3
,η
4
相同.所以A也是Ax=0的基础解系.故选A.
转载请注明原文地址:https://kaotiyun.com/show/9u54777K
0
考研数学一
相关试题推荐
设A为3阶实对称矩阵,其特征值为λ1=0,λ2=λ3=1,α1,α2是A的两个不同的特征向量,且A(α1+α2)=α2.求线性方程组Ax=α2的通解.
一容器的内表面是由曲线x=y+siny(0≤y≤π/2,单位:m)绕y轴旋转一周所得的旋转面(如图),现以π/16m3/s的速率往容器中加水,求当水面高度为π/4m时水面上升的速率.
求函数g(x,y,z)=的最大值,并求出一个最大值点.
微分方程y”+4y=x+cos2x的特解可设为()
设函数f(x)满足f(1)=1,且有f’(x)=,证明:极限存在。
当x→0+时,确定下列无穷小量的阶数:
当x→0+时,sinxa,均是比x高阶的无穷小量,求a的取值范围。
已知A是n阶矩阵,α1,α2,…,αs是n维线性无关列向量组,若Aα1,Aα2,…,Aαs线性相关,证明:A不可逆.
已知3维向量组α1,α2,α3线性无关,则向量组α1-α2,α2-kα3,α3-α1线性无关的充要条件是________.
随机试题
男,40岁。发现血尿、蛋白尿5年。查体:BP150/90mmHg,24h尿蛋白定量1.0~1.7g,血肌酐100μmol/L。治疗的主要目标是
慢性肾功能不全时,代谢性酸中毒的原因包括()。
“件数”栏应填()。
关于实行价格歧视基本条件的说法,正确的有()。
新课程改革强调的综合实践活动就是课外活动。()
下列说法正确的是()。
设f(x)在[a,b]上二阶可导,且f(a)=f(b)=0,f’(a).f’(b)>0,试证存在ξ∈(a,b),η∈(a,b),使f(ξ)=0,f"(η)=0.
Itshouldnotbeasurprise.Lonelinessandsocialisolationareontherise,【C1】______manytocallitanepidemic.Inrecentde
以下说法正确的是
命令按钮Command1的Caption属性为“退出(x)”,要将命令按钮的快捷键设为Alt+x,应修改Caption属性为______。
最新回复
(
0
)