首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α为实n维非零列向量,αT表示α的转置.(1)证明:A=E一为对称的正交矩阵;(2)若α=(1,2,一2)T,试求出矩阵A;(3)若β为税维列向量,试证明:Aβ=β一(bc)α,其中,b、c为实常数.
设α为实n维非零列向量,αT表示α的转置.(1)证明:A=E一为对称的正交矩阵;(2)若α=(1,2,一2)T,试求出矩阵A;(3)若β为税维列向量,试证明:Aβ=β一(bc)α,其中,b、c为实常数.
admin
2016-04-11
99
问题
设α为实n维非零列向量,α
T
表示α的转置.(1)证明:A=E一
为对称的正交矩阵;(2)若α=(1,2,一2)
T
,试求出矩阵A;(3)若β为税维列向量,试证明:Aβ=β一(bc)α,其中,b、c为实常数.
选项
答案
记常数b=[*],则b>0,A=E一bαα
T
. (1)A
T
=(E一bαα
T
)
T
=E一baa
T
=A,所以A为对称矩阵.AA
T
=AA=(E一bαα
T
)(E—bαα
T
)=E一2bαα
T
+b
2
α(α
T
α)α
T
,而α
T
α=[*],代入上式得AA
T
=E,所以A为正交矩阵. (2)[*] (3)Aβ=(E一bαα
T
)β=β一bα(α
T
β)=β一b(α
T
β)α=β一(bc)α,其中常数c=α
T
β.
解析
转载请注明原文地址:https://kaotiyun.com/show/A8w4777K
0
考研数学一
相关试题推荐
f(x)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f’(0)=0,证明:存在ξ∈(-1,1),使得f"’(ξ)=3.
设A为3阶实对称矩阵,存在可逆矩阵,使得P-1AP=diag(1,2,-1),A的伴随矩阵A*有特征值λ0,对应的特征向量为α=(2,5,-1)T。求正交矩阵Q,使得QTA*Q=A。
设D={(x,y)|x2+y2≤t2,x≥0,y≥0,t≥0},f(x)是连续函数,f(0)=0,且满足,求f(x)在[0,+∞)上的表达式。
设A是3阶可逆矩阵,A的特征值为1,1/2,1/3,则|A|的代数余子式A11,A22,A33之和A11+A22+A33=________。
试求z=f(x,y)=x3+y3-3xy在矩形闭域D={(x,y)|0≤x≤2,-1≤y≤2}上的最大值、最小值.
试求函数f(x,y)=4x2-6x+3y+1在平面区域D={(x,y)|x2+y2≤a2,a>0)上的平均值.
设函数y=y(x)由参数方程确定,则2|t=0=________.
[*]本题是两个不同分布的综合问题,所求的事件Vn为n次独立重复实验中X的观测值不大于0.1的次数,故Vn服从二项分布b(n,p),而这里p为X的观测值不大于0.1的概率,需要根据X服从的分布来计算.
从5个数:1,2,3,4,5中任取3个数,再按从小到大排列,设X表示中间那个数,求X的概率分布.
假设由自动生产线加工的某种零件的内径X(单位:毫米)服从正态分布N(μ,1),内径小于10或大于12的为不合格品,其余为合格品,销售每件合格品获利,销售每件不合格品亏损,已知销售利润T(单位:元)与销售零件的内径X有如下关系:T=问平均内径μ取何值时,销售
随机试题
作图分析垄断竞争厂商长期均衡状态。
数据库系统的主要作用是_______。
母乳喂养儿肠道主要的细菌是
幽门梗阻的典型特征是
朱镕基同志在2001年视察北京国家会计学院时,为北京国家会计学院题词的内容不包括( )。
货币市场基金是我国基金市场一类重要的产品类型,以“余额宝”为代表的货币市场基金近年来迅速发展,成为投资者现金管理的良好工具。但货币基金快速发展的同时,同样面临多方面的风险,如T+0赎回方式带来的流动性风险,期限错配问题带来的投资管理风险等。2016年12月
你今天的着装.根据着装学,我们觉得你这个人比较拘谨,你怎么解释?(2012年6月29日湖南省法检系统公务员面试真题)
下列关于编译系统对某高级语言进行翻译的叙述中,错误的是(10)。
重载的关系运算符和逻辑运算符的返回类型应当是_______。
Whatistherestaurantfamousfor?
最新回复
(
0
)