首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=(1—a)x12+(1—a)x22+2x32+2(1+a)x1x2的秩为2。 求正交变换x=Qy,把f(x1,x2,x3)化为标准形。
已知二次型f(x1,x2,x3)=(1—a)x12+(1—a)x22+2x32+2(1+a)x1x2的秩为2。 求正交变换x=Qy,把f(x1,x2,x3)化为标准形。
admin
2018-12-29
41
问题
已知二次型f(x
1
,x
2
,x
3
)=(1—a)x
1
2
+(1—a)x
2
2
+2x
3
2
+2(1+a)x
1
x
2
的秩为2。
求正交变换x=Qy,把f(x
1
,x
2
,x
3
)化为标准形。
选项
答案
a=0,则A=[*],由特征多项式 |λE—A|=[*]=(λ—2)[(λ—1)
2
—1]=λ(λ—2)
2
得矩阵A的特征值λ
1
=λ
2
=2,λ
3
=0。 当λ=2,由(2E—A)x=0得特征向量α
1
=(1,1,0)
T
,α
2
=(0,0,1)
T
。 当λ=0,由(OE—A)x=0得特征向量α
3
=(1,—1,0)
T
。 容易看出α
1
,α
2
,α
3
已两两正交,故只需将它们单位化 γ
1
=[*](1,1,0)
T
,γ
2
=(0,0,1)
T
,γ
3
=[*](1,—1,0)
T
。 那么令Q=(γ
1
,γ
2
,γ
3
)=[*],则在正交变换x=Qy下,二次型f(x
1
,x
2
,x
3
)化为标准形f(x
1
,x
2
,x
3
)=x
T
Ax=y
T
Λy=2y
1
2
+2y
2
2
。
解析
转载请注明原文地址:https://kaotiyun.com/show/ADM4777K
0
考研数学一
相关试题推荐
求当x>0,y>0,z>0时,函数f(x,y,z)=lnx+21ny+3lnz在球面x2+y2+z2=6λ2上的最大值.并证明:对任何正实数a、b、c,不等式ab2c3≤成立.
设函数y=f(r),而试求函数u.
设空间区域Ω由曲面z=a2一x2一y2与平面z=0所围成,其中a为正常数.记Ω表面的外侧为∑,Ω的体积为V,证明:x2yz2dydz—xy2z2dzdx+z(1+xyz)dxdy=V.
掷两枚均匀的骰子,以X和Y分别表示掷出的最大点数和最小点数,试求随机变量Y关于{X=i)(i=1,…,6)的条件概率分布.问随机变量X和Y是否独立?为什么?
设n阶方阵A≠0,满足Am=0(其中m为某正整数).求A的特征值.
已知随机变量X服从参数为1的指数分布,Y服从标准正态分布,X与Y独立.现对X进行n次独立重复观察,用Z表示观察值大于2的次数,求T=Y+Z的分布函数FT(t).
设y=ex为微分方程:xy’+P(x)y=x的解,求此微分方程满足初始条件y(ln2)=0的特解.
设f(x)在x=a的邻域内二阶可导且f’(a)≠0.则=_______.
设y1(x)、y2(x)为二阶变系数齐次线性方程y″+p(x)y′+q(x)y=0的两个特解,则C1y1(x)+C2y2(x)(C1,C2为任意常数)是该方程通解的充分条件为
求满足初始条件y"+2x(y’)2=0,y(0)=1,y’(0)=1的特解.
随机试题
患者,女,48岁,需拔除右下后牙残根,麻醉中发生晕厥,意识丧失,要采取的抢救措施应包括
关于激光打印机的叙述,错误的是
关于恶性黑色素瘤的正确描述是
脊髓型颈椎病的治疗原则是
A.有利、公正B.权利、义务C.廉洁奉公D.医乃仁术E.等价交换属于医学伦理学基本原则的是()
通常设备监理工程师反驳承包商的索赔的理由主要包括()。
某水利工程验收委员会由9人组成,根据《水利水电建设工程验收规程》(SL223-2008),该工程验收结论至少应经()人同意。
下列各种存货发出的补价方法中,不利于存货成本日常管理与控制的方法是()。
为了使模块尽可能独立,要求
在Word文档中,不可直接操作的是()。
最新回复
(
0
)