首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,k为正整数,α是齐次方程组AkX=0的一个解,但是Ak-1α≠0.证明α,Aα,…,Ak-1α线性无关.
设A是n阶矩阵,k为正整数,α是齐次方程组AkX=0的一个解,但是Ak-1α≠0.证明α,Aα,…,Ak-1α线性无关.
admin
2018-04-18
95
问题
设A是n阶矩阵,k为正整数,α是齐次方程组A
k
X=0的一个解,但是A
k-1
α≠0.证明α,Aα,…,A
k-1
α线性无关.
选项
答案
用定义证明. 方法一 设c
1
α+c
2
Aα+…+c
k
A
k-1
α=0,要推出每个c
i
=0. 先用A
k-1
乘上式两边,注意到当m≥k时,A
m
α=0(因为A
k
X=0),得到c
1
A
k-1
α=0.又因为A
k-1
α≠0,所以c
1
=0.上式变为c
2
Aα+…+c
k
A
k-1
α=0.再用A
k-2
乘之,可得到c
2
=0.如此进行下去,可证明每个c
i
=0. 方法二 用反证法.如果α,Aα,…,A
k-1
α线性相关,则存在不全为0的c
1
,c
2
,…,c
k
,使得c
1
α+c
2
Aα+…+c
k
A
k-1
α=0,设其中第一个不为0的系数是c
i
,则c
i
A
i-1
α+…+c
k
A
k-1
α=0,用A
k-i
乘之,得c
i
A
k-1
α=0.从而A
k-1
α=0,与条件矛盾.
解析
转载请注明原文地址:https://kaotiyun.com/show/AVk4777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 C
[*]
设A是n阶正定矩阵,E是n阶单位阵,证明A+E的行列式大于1.
试确定参数a,b及特征向量ξ所对应的特征值;
当x=1,且(1)△x=1,(2)△x=0.1,(3)△x=0.01时,分别求出函数f(x)=x2-3x+5的改变量及微分,并加以比较,是否能得出结论:当△x愈小时,二者愈近似.
设3阶对称矩阵A的特征向量值λ1=1,λ2=2,λ3=-2,又α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.(I)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B.
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其α2,α3,α4线性无关,α1=2α2-α3,如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
设n元线性方程组Ax=b,其中A=,x=(x1,…,xn)T,b=(1,0,…,0)T.(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
求极限
(2005年试题,二)设区域D={(x,y)|x2+y2≤4,x>0,y≥0}f(x)为D上的正值连续函数,a,b为常数,则
随机试题
求下列各梁的剪力方程和弯矩方程,做剪力图和弯矩图,并求出|Fsmax|和|M|max
A.红细胞数目B.血浆总蛋白含量C.血浆球蛋白含量D.血浆NaCl含量血浆总渗透压主要决定于
18岁,工作时从10m高处坠落,40分钟后送到医院。查体:神清、腹痛、右大腿畸形,疼痛医生应首先进行哪方面检查
患者,男,67岁。以慢性支气管炎并发慢性阻塞性肺气肿入院。于一阵干咳后突感左上胸剧烈刺痛,出现明显呼吸困难,不能平卧,听诊左肺呼吸音明显减弱。应考虑为()。
大叶性肺炎灰色肝样变期肺实变是因为肺泡腔内充满
下列评价指标中不属于盈利能力分析的是()。
在FIDIC合同条件下,工程结算的冬件包括()。
____________Schreibtischh?ngteineLampe.
Justwhenyouhadfiguredouthowtomanagefatinyourdiet,researchersarenowwarningagainstanothercommonmealtimepitfal
MysonJoeywasbornwithclubfeet.Thedoctorsassuredusthatwithtreatmentbewouldbeabletowalknormally,butwouldnev
最新回复
(
0
)