首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设某种元件的使用寿命X的概率密度为 其中θ>0为未知参数,X1,X2,…,Xn为来自总体X的简单随机样本,求θ的最大似然估计量,并讨论无偏性.
设某种元件的使用寿命X的概率密度为 其中θ>0为未知参数,X1,X2,…,Xn为来自总体X的简单随机样本,求θ的最大似然估计量,并讨论无偏性.
admin
2016-01-11
40
问题
设某种元件的使用寿命X的概率密度为
其中θ>0为未知参数,X
1
,X
2
,…,X
n
为来自总体X的简单随机样本,求θ的最大似然估计量
,并讨论无偏性.
选项
答案
当样本值x
i
≥0(i=1,2.…,n)时,L(θ)>0,取对数,得 lnL(θ)=nln2—2[*](x
i
一θ). 因为[*]=2n>0,所以L(θ)单调增加.由于θ必须满足θ≤x
i
(i=1,2,…,n),因此θ≤min(x
1
,x
2
,…,x
n
). 如果取θ=min(x
1
,x
2
,…,x
n
},则L(θ)取最大值,所以θ的最大似然估计值为 [*]
解析
设样本值为x
1
,x
2
,…,x
n
,则似然函数为
当x
i
≥0(i=1,2,…,n)时,L(θ)>0.我们只需在此条件下确定L(θ)的最大值点
是否为θ的无偏估计,需要求出
.
转载请注明原文地址:https://kaotiyun.com/show/Ae34777K
0
考研数学二
相关试题推荐
设3阶实对称矩阵A满足A2=2A,已知二次型f(x1,x2,x3)=xTAx经正交变换x=Qy化为λy22+λy32(λ≠0),其中Q=(b>0,c>0).求一个可逆线性变换x=Pz化f为规范形.
设连续型随机变量X的概率密度为f(x),且f(-x)=f(x),x∈(-∞,+∞),记Y=|X|,EX存在,则X与Y()
设在点处,函数f(x,y)=x2+(y-1)2(x≠0)在条件=1(a>0,b>0)下取得最小值,求a,b的值.
设A是3阶实对称矩阵,二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22-y32,A*是A的伴随矩阵,则二次型g(x1,x2,x3)-xTA*x的规范形为()
设随机变量X与Y相互独立,P{Y=-1}=P{Y=1}=,X的概率密度f(x)满足f’(x)+f(x)=0(σ>0),Z=XY.设Z1,Z2,…,Zn为总体Z的简单随机样本,求σ的最大似然估计量.
设随机变量X与Y相互独立,P{X=-1}=P{X=1}=,Y~N(0,1),则概率P{XY≤E(XY)}=________.
设A=,则与A既相似又合同的矩阵为()
设A为3阶实对称矩阵,β=(3,3,3)T,方程组Ax=β的通解为k1(-1,2,-1)T+k2(0,-1,1)T+(1,1,1)T(k1,k2为任意常数).求A的特征值和特征向量;
设X1,X2,…,Xn是来自总体X~N(0,1)的简单随机样本,则服从的分布为()
某人的食量是2500卡/天,其中1200卡/天用于基本的新陈代谢,在健身运动中,他所消耗的为16卡/千克/天乘以他的体重.假设以脂肪形式储存的热量百分之百有效,而一千克脂肪含热量10000卡,求该人体重怎样随时间变化?
随机试题
牙源性钙化上皮瘤的病理特征是
物理降温后,需多长时间后再次测量体温以便进行观察( )。
采集24小时尿标本的方法,以下正确的是
力矩分配法中的传递弯矩为()。
甲公司为居民企业。2016年发生下列业务取得的收入中,应当计入甲公司当年企业所得税应纳税所得额的有()。(2017年)
一般资料:求助者,女性,35岁,某学校教师。案例介绍:求助者对人热情,乐于助人,其丈夫经营一家公司,收入颇丰,因此在经济上经常帮助他人。求助者与一位同事关系良好,过去曾多次帮助她,但近来两人产生矛盾。求助者非常生气,内心很痛苦,主动来进行心理咨询
提出“超越遏制战略”的美国总统足()。
党对公安工作领导的(),就是要求公安机关必须无条件地置于党中央及各级党委的领导之下,不得以任何理由或借口削弱、抵制、损害或者摆脱党的领导。
Whichorganizationholdsthisseminar?
TheSeriousNeedforPlay[A]StuartBrown,aTexas’spsychiatrist,interviewed26convictedmurderersanddiscoveredthatmosto
最新回复
(
0
)