首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)在[0,+∞)上有连续的导数,f(x)的值域为[0,+∞),且f’(x)>0,f(0)=0.又x=φ(y)为y=f(x)的反函数,对于常数a>0,b>0,试证明: ∫0af(x)dx+∫0bφ(y)dy
设y=f(x)在[0,+∞)上有连续的导数,f(x)的值域为[0,+∞),且f’(x)>0,f(0)=0.又x=φ(y)为y=f(x)的反函数,对于常数a>0,b>0,试证明: ∫0af(x)dx+∫0bφ(y)dy
admin
2017-10-23
53
问题
设y=f(x)在[0,+∞)上有连续的导数,f(x)的值域为[0,+∞),且f’(x)>0,f(0)=0.又x=φ(y)为y=f(x)的反函数,对于常数a>0,b>0,试证明:
∫
0
a
f(x)dx+∫
0
b
φ(y)dy
选项
答案
设g(a)=∫
0
a
f(x)dx+∫
0
b
φ(y)dy—ab,则g’(a)=f(a)一b.令g’(a)=0,得b=f(a),即a=φ(b).当0<a<φ(b)时,由f’(x)>0有f(a)<f[φ(b)]=b,从而知g’(a)<0;当0<φ(b)<a时有f[φ(6)]=b<f(a),从而知g’(a)>0,所以g[φ(b)]为最小值,即 g[φ(b)]=∫
0
φ(b)
f(x)dx+∫
0
b
φ(y)dy一φ(b)b. 由于 (g[φ(b)])’=f[φ(b)]φ’(b)+φ(b)一φ(b)一φ’(b)b =bφ’(b)+φ(b)一φ(6)一φ’(b)b≡0, 又 g[φ(0)]=∫
0
φ(0)
f(x)dx+∫
0
0
φ(Y)dy一φ(0)0=0(因φ(0)=0), 所以g[φ(b)]≡0,从而有 g(a)=∫
0
a
f(x)dx+∫
0
b
φ(y)dy—[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/AzX4777K
0
考研数学三
相关试题推荐
当x→1时,f(x)=的极限为().
设f(x)可导,则当△x→0时,△y—dy是△x的().
求
求微分方程y"+4y’+4y=0的通解.
求微分方程y"一y’一6y=0的通解.
求幂级数的和函数.
求幂级数的收敛区间.
设f(x)在区间[0,1]上连续,在(0,1)内可导,且满足f(1)=证明:存在ξ∈(0,1),使得f’(ξ)=2ξf(ξ).
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离恒等于该点处的切线在y轴上的截距,且L经过点求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形的面积最小.
设g(x)=,f(x)=∫0xg(t)dt.(1)证明:y=f(x)为奇函数,并求其曲线的水平渐近线;(2)求曲线y=f(x)与它所有水平渐近线及Oy轴围成图形的面积.
随机试题
败毒散中配伍少量人参,意在()(1998年第51题)
A.活络效灵丹B.桃仁红花煎C.血府逐瘀汤D.通窍活血汤E.桃红四物汤治疗瘀血型胸痹宜选用
投标人被招标项目所在地省级交通主管部门评为AA信用等级情况下,一般()。
供货方作为项目建设的一个参与方,其项目管理工作主要在()阶段进行。
在有限责任公司中,新加入投资者的出资额大于其在注册资本中实际享有份额的原因有()。
国内生产总值(GDP)是指一个国家(或地区)所有()在一定时期内(一般按年统计)生产活动的最终成果。
—Wouldyoutakethisalongtotheofficeforme?—______.
试比较《天朝田亩制度》与《资政新篇》。
凯尔曼态度改变的三个阶段是依从、认同和()
(1)Acelebrityisawidely-recognizedorfamouspersonwhocommandsahighdegreeofpublicandmediaattention;therefore,one
最新回复
(
0
)