首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)∈C[a,b],在(a,b)内二阶可导,且f’’(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫ab(x)dx=1.证明:∫abf(x)φ(c)dx≥f[∫abxφ(x)dx].
设f(x)∈C[a,b],在(a,b)内二阶可导,且f’’(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫ab(x)dx=1.证明:∫abf(x)φ(c)dx≥f[∫abxφ(x)dx].
admin
2019-07-22
64
问题
设f(x)∈C[a,b],在(a,b)内二阶可导,且f’’(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫
a
b
(x)dx=1.证明:∫
a
b
f(x)φ(c)dx≥f[∫
a
b
xφ(x)dx].
选项
答案
因为f’’(x)≥0,所以有f(x)≥f(x
0
)+f’(x
0
)(x-x
0
). 取x
0
=∫
a
b
xφ(x)dx,因为φ(x)≥0,所以以aφ(x)≤xφ(x)≤bφ(x),又∫
a
b
φ(x)dx=1,于是有a≤∫
a
b
xq>xφ(x)dx=x
0
≤b.把x
0
=∫
a
b
xφ(x)dx代入f(x)≥f(x
0
)+f’(x
0
)(x-x
0
)中,再由φ(x)≥0,得 f(x)φ(x)≥f(x
0
)φ(x)+f’(x
0
)[xφ(x)-x
0
φ(x)], 上述不等式两边再在区间[a,b]上积分,得∫
a
b
f(x)φ(x)dx≥f[∫
a
b
xφ(x)dx].
解析
转载请注明原文地址:https://kaotiyun.com/show/BFN4777K
0
考研数学二
相关试题推荐
设α1,α2,α3,β1,β2均为四维列向量,且|A|=|α1,α2,α3,β1|=m,|B|=|α1,α2,β2,α3|=n,则|α3,α2,α1,(β1+β2)|=()
设f(t)二阶可导,g(u,v)二阶连续可偏导,且z=f(2χ-y)+g(χ,χy),求
设函数z=z(χ,y)由方程χ2+y2+z2=χyf(z2)所确定,其中f是可微函数,计算并化成最简形式.
讨论f(χ,y)=在点(0,0)处的连续性、可偏导性及可微性.
求曲线y=与χ轴所围成的平面区域绕y轴旋转而成的几何体的体积.
设f(χ)在[a,b]上连续,在(a,b)内可导,且f(a)f(b)>0,f(a)f()<0.证明:存在ξ∈(a,b),使得f′(ξ)=f(ξ).
设函数f(x)=若反常积分∫1+∞f(x)dx收敛,则()
设A,B均为2阶矩阵,A*,B*分别为A,B的伴随矩阵.若|A|=2,|B|=3,则分块矩阵的伴随矩阵为
运用导数的知识作函数y=x+的图形.
假定所涉及的反常积分(广义积分)收敛,证明:∫-∞+∞=∫-∞+∞f(x)dx.(*)
随机试题
各国秘书为其领导工作服务,开展办文、办会、办事等日常工作业务的前提是
Theboat______,throwingtheboysintothewater.
陈旧性脱位是指:
A、T细胞表面B、B细胞表面C、NK细胞表面D、肥大细胞表面E、造血干细胞表面CD34分子表达在
先天禀赋不足是引起消渴病的重要内在因素,其中尤以阳虚体质最易罹患。()
特种设备的安装单位应具备的条件是()。
依据企业所得税相关规定,下列对所得来源地的确定,正确的有()。(2013年)
某个体零售户于2011年2月1日购入某品牌冰箱10台,含税进价为23.4万元。当月将其中6台销售给某三星级宾馆,货款金额为30万元(不含税)。则该个体零售户当月应缴纳的增值税为()万元。
一、注意事项一、本试卷由给定资料与作答要求两部分构成。考试时限为150分钟。其中,阅读给定资料参考时限为40分钟,作答参考时限为110分钟。满分100分。二、所有考生必须按要求作答,未按要求作答的,不得分。二、给定资料1.1996
一棵二叉树中共有70个叶子结点与80个度为1的结点,则该二叉树中的总结点数为
最新回复
(
0
)