高中“方程的根与函数的零点”(第一节课)设定的教学目标如下: ①通过对二次函数图像的描绘,了解函数零点的概念,渗透由具体到抽象思想,领会函数零点与相应方程实数根之间的关系。 ②理解提出零点概念的作用,沟通函数与方程的关系。 ③通过对现实问题的分析,体会用函

admin2019-06-10  38

问题 高中“方程的根与函数的零点”(第一节课)设定的教学目标如下:
①通过对二次函数图像的描绘,了解函数零点的概念,渗透由具体到抽象思想,领会函数零点与相应方程实数根之间的关系。
②理解提出零点概念的作用,沟通函数与方程的关系。
③通过对现实问题的分析,体会用函数系统的角度去思考方程的思想,使学生理解动与静的辩证关系。掌握函数零点存在性的判断。
完成下列任务:
根据教学目标①,设计问题链(至少包含三个问题),并说明设计意图。

选项

答案问题①:求方程x2-2x-3=0的实数根,并画出函数y=x2-2x-3的图像。 问题②:观察形式上函数y=x2-2x-3与相应方程x2-2x-3=0的联系。 问题③:由于形式上的联系,则方程x2-2x-3=0的实数根在函数y=x2-2x-3的图像中如何体现? 【设计意图】以学生熟悉二次函数图像和二次方程为平台,观察方程和函数形式上的联系,从而得到方程实数根与函数图像之间的关系。理解零点是连接函数与方程的结点。

解析
转载请注明原文地址:https://kaotiyun.com/show/BMtv777K
0

相关试题推荐
最新回复(0)