首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=XTAX,tr(A)=1,又B=且AB=O. (1)求正交矩阵Q,使得在正交变换X=QY下二次型化为标准形. (2)求矩阵A.
设二次型f(x1,x2,x3)=XTAX,tr(A)=1,又B=且AB=O. (1)求正交矩阵Q,使得在正交变换X=QY下二次型化为标准形. (2)求矩阵A.
admin
2017-12-31
36
问题
设二次型f(x
1
,x
2
,x
3
)=X
T
AX,tr(A)=1,又B=
且AB=O.
(1)求正交矩阵Q,使得在正交变换X=QY下二次型化为标准形.
(2)求矩阵A.
选项
答案
(1)由AB=O得[*]为λ=0的两个 线性无关的特征向量,从而λ=0为至少二重特征值,又由tr(A)=1得λ
3
=1, 即λ
1
=λ
2
=0,λ
3
=1. 令λ
3
=1对应的特征向量为[*] 因为A
T
=A,所以[*] 解得λ
3
=1对应的线性无关的特征向量为[*] [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/CTX4777K
0
考研数学三
相关试题推荐
已知A,B均是3阶矩阵,将A中第3行的一2倍加到第2行得矩阵A1,将B中第1列和第2列对换得到B1,又A1B1=,则AB=________.
设试问当α取何值时,f(x)在点x=0处,①连续,②可导,③一阶导数连续,④二阶导数存在.
用x=et化简微分方程
设a>0,函数f(x)在[0,+∞)上连续有界.证明:微分方程y’+ay=f(x)的解在[0,+∞)上有界.
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记αj=[α1j,α2j,α3j,α4j]T,j=1,2,…,5.问:α4能否由α1,α2,α3线性表出,说明理由.
设函数f(x)在(a,b)内存在二阶导数,且f"(x)<0.试证:若x0∈(a,b),则对于(a,b)内的任何x,有f(x0)≥f(x)-f’(x0)(x-x0),当且仅当x=x0时等号成立;
证明:n>3的非零实方阵A,若它的每个元素等于自己的代数余子式,则A是正交矩阵.
设函数f(x)在x=4处连续,且则曲线y=f(x)在点(4,f(4))处的切线方程是_______。
设周期函数f(x)在(一∞,+∞)内可导,周期为4,又,则曲线y=f(x)在点(5,f(5))处的切线斜率为
设函数f(x)与g(x)在(a,b)上可导,考虑下列叙述:①若f(x)>g(x),则f’(x)>g’(x);②若f’(x)>g’(x),则f(x)>g(x),则()
随机试题
某男,42岁,1小时前左前胸被刀扎伤,患者面色苍白,烦躁不安,四肢湿冷,呼吸困难,脉搏微弱细数,颈静脉充盈,心音遥远,血压75/60mmHg,应考虑的诊断是
融资租赁的租金由()构成。
出口货物集港运输中,一般来说,汽车的经济运距是()。
动产浮动抵押的一大特征是抵押权设立之初,抵押财产并不确定。下列情形当中,能够导致抵押财产确定的有()。
阅读以下说明,回答问题1至问题4,将解答填入答题纸对应的解答栏内。【说明】某公司采用WindowsServer2003配置Web服务器和FTP站点。FTP的配置如图2.3所示。1.当客户机连接到FTP服务器时,客户端显示的消息为(11)。
结构化程序设计的3种结构是()。
有个大学物理系学生(1)这个问题困扰了很(2):“为什么烧水时水壶发出的声音逐渐(3)大,但是到了水快煮沸时声音却:(4)低了(5)?”结果,他从亚当斯那里得到了(6)。声音是因为上升的气泡到达较冷的水时便会破裂而(7)的,等到壶里所有水的(8)都相等之后
Natureoncehelpedpeoplefindfire.Ifthefirewentout,theywouldmakeanotherfire.
Readthistextabouteffectivebankingsupervision.Choosethebestsentencefromtheoppositepagetofilleachofthegaps
Everyyear,manyChinesestudentsstudyinNewZealand,andover100,000Chinesetouristscometoourcountryandenjoya100%P
最新回复
(
0
)