首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知η1,η2,η3,η4是齐次方程组Ax=0的基础解系,则下列向量组中也是Ax=0基础解系的是
已知η1,η2,η3,η4是齐次方程组Ax=0的基础解系,则下列向量组中也是Ax=0基础解系的是
admin
2020-12-10
71
问题
已知η
1
,η
2
,η
3
,η
4
是齐次方程组Ax=0的基础解系,则下列向量组中也是Ax=0基础解系的是
选项
A、η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
一η
1
B、η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
+η
1
C、η
1
+η
2
,η
2
+η
3
,η
3
一η
4
,η
4
一η
1
D、η
1
,η
2
,η
3
,η
4
的等价向量组.
答案
A
解析
等价向量组不能保证向量个数相同,因而不能保证线性无关.例如向量组η
1
,η
2
,η
3
,η
4
,η
1
+η
2
与向量组η
1
,η
2
,η
3
,η
4
等价,但前者线性相关,因而不能是基础解系.故D不正确.B、C均线性相关,因此不能是基础解系.故B与C也不正确.注意到:(η
1
+η
2
)一(η
2
一η
3
)一(η
3
一η
4
)一(η
4
+η
1
)=0,(η
1
+η
2
)一(η
2
+η
3
)+(η
3
一η
4
)+(η
4
一η
1
)=0,唯有A,η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
一η
1
是Ax=0的解,又由(η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
一η
1
)=(η
1
,η
2
,η
3
,η
4
)
,且
知η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
一η
1
线性无关,且向量个数与η
1
,η
2
,η
3
,η
4
相同.所以A也是Ax=0的基础解系.故选A.
转载请注明原文地址:https://kaotiyun.com/show/CW84777K
0
考研数学二
相关试题推荐
微分方程y"-4y=xe2x+2sinx的特解形式为()。
设u=f(x2+y2,z)其中f二阶连续可偏导,且函数z=z(x,y)由xy+ex=xz确定,求.
计算.
[*]
[*]
设f(x,y)=则f(x,y)在点(0,0)处()。
(15年)设A>0,D是由曲线段y=Asinx(0≤x≤)及直线y=0,所围成的平面区域,V1,V2分别表示D绕x轴与绕y轴旋转所成旋转体的体积.若V1=V2,求A的值.
设D是由直线y=1,y=x,y=-x围成的有界区域,计算二重积分dxdy.
(2000年)已知f(χ)是周期为5的连续函数.它在χ=0某个邻域内满足关系式f(1+sinχ)-3f(1-sinχ)=8χ+α(χ)其中α(χ)是当χ→0时比χ高阶的无穷小,且f(χ)在χ=1处可导,求曲线y=f(χ)在点(6,f(6
[2007年]设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=[1,一1,1]T是A的属于λ1的一个特征向量.记B=A5一4A3+E,其中E为3阶单位矩阵.(I)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B
随机试题
下肢牵引时抬高床尾的主要目的是
A.肩胛间区、胸骨旁、上腹部可闻及血管杂音B.大量蛋白尿C.尿中白细胞、脓细胞较多,且有尿频、尿急史D.满月脸,多毛E.发作时血压骤升伴剧烈头痛,心悸,不发作时血压可正常患者,男性.30岁。发作性血压增高,发作时血压达200/1
关于检查创伤时的注意事项中,哪项不正确
A.单侧喉返神经损伤B.双侧喉返神经损伤C.喉上神经内支损伤D.喉上神经外支损伤E.甲状旁腺损伤甲状腺大部切除术后出现手足抽搐的原因为
兽药经营企业应当注意收集兽药使用信息,不在发现内容应当及时向所在地兽医行政管理部门报告之列的是()。
在野外常见的边坡变形破坏类型中,边坡岩体主要在重力作用下向临空方向发生长期缓慢的塑性变形现象,称为()。
记账凭证核算形式是适用于一切企业的会计核算形式。()
公开发行证券的,主承销商应当在证券上市后20日内向中国证监会报备承销总结报告,总结说明发行期间的基本情况及新股上市后的表现,并提供下列文件:募集说明书单行本;承销协议及承销团协议;律师鉴证意见(限于首次公开发行);会计师事务所验资报告;中国证监会要求的其他
下列因素中,能够决定行业进入壁垒大小的因素包括()。
与淋巴瘤发病有关的病原体是
最新回复
(
0
)