(1)设f(x)=ex一∫0x(x一t)f(t)dt,其中f(x)连续,求f(x). (2)设f(x)在(一1,+∞)内连续且f(x)一=1(x>一1),求f(x).

admin2019-08-23  0

问题 (1)设f(x)=ex一∫0x(x一t)f(t)dt,其中f(x)连续,求f(x).
(2)设f(x)在(一1,+∞)内连续且f(x)一=1(x>一1),求f(x).

选项

答案(1)由f(x)=ex一∫0x(x—t)f(t)dt,得f(x)=ex一x∫0xf(t)dt+∫0xtf(t)dt,两边对x求导,得f’(x)=ex一∫0xf(t)dt,两边再对x求导得f"(x)+f(x)=ex,其通解为f(x)=C1cosx+C2sinx+[*] 在f(x)=ex—∫0x(x一t)f(t)dt中,令x=0得f(0)=1,在f’(x)=ex—∫0xf(t)dt中,令x=0得f’(0)=1,于是有[*] (2)由f(x)-[*]=1得(x+1)f(x)一∫0xtf(t)dt=x+1,两边求导得f(x)+(x+1)f’(x)一xf(x)=1,整理得[*] 解得f(x)=[*] 由f(0)=1得C=3,故f(x)=[*]

解析
转载请注明原文地址:https://kaotiyun.com/show/Cec4777K
0

最新回复(0)