首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
确定常数α使向量组α1=(1,1,a)T,α2=(1,n,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(-2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
确定常数α使向量组α1=(1,1,a)T,α2=(1,n,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(-2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
admin
2016-01-11
104
问题
确定常数α使向量组α
1
=(1,1,a)
T
,α
2
=(1,n,1)
T
,α
3
=(a,1,1)
T
可由向量组β
1
=(1,1,a)
T
,β
2
=(一2,a,4)
T
,β
3
=(-2,a,a)
T
线性表示,但向量组β
1
,β
2
,β
3
不能由向量组α
1
,α
2
,α
3
线性表示.
选项
答案
记A=(α
1
,α
2
,α
3
),B=(β
1
,β
2
,β
3
),由于β
1
,β
2
,β
3
不能由α
1
,α
2
,α
3
线性表示,故r(A)<3,从而|A|=一(a一1)
2
(a+2)=0,所以a=1或a=一2.当a=1时,α
1
=α
2
=α
3
=β
1
=(1,1,1)
T
,故α
1
,α
2
,α
3
可由β
1
,β
2
,β
3
线性表示,但β=(一2,1,4)
T
不能由α
1
,α
2
,α
3
线性表示,所以a=1符合题意.当a=一2时,由于[*]考虑线性方程组Bx=α
2
,因为r(B)=2,r(B,α
2
)=3,所以方程组Bx=α
2
无解,即α
2
不能由β
1
,β
2
,β
3
线性表示,与题设矛盾.因此a=1.
解析
本题考查向量组的线性表示.要求考生掌握矩阵A=(α
1
,α
2
……α
s
,α)经初等行变换变为矩阵B=(β
1
β
2
……β
s
,β),则A的列向量组α
1
,α
2
……α
s
,α与B的列向量组β
1
β
2
……β
s
,β对应的列有相同的线性相关性.
方程组x
1
α
1
+x
2
α
2
+…+x
s
α
s
=α与方程组x
1
β
1
+x
2
β
2
+…+x
s
β
s
=β同解.
转载请注明原文地址:https://kaotiyun.com/show/Ci34777K
0
考研数学二
相关试题推荐
设A是3阶实对称矩阵,二次型f(x1,x2,x3)=xTAx经正交变换x=Qy后的标准形为y12+y22-y32,则二次型g(x1,x2,x3)=xTAA*x经可逆线性变换x=Py后的规范形为()
设某商品的需求函数为Q=100-5P,其中Q,P分别表示需求量和价格,若商品需求弹性的绝对值大于1,则商品价格P的取值范围是________.
设,y=f(x)的反函数为y=g(x),则g’(2)=________.
设向量a=(1,1,-1)T是的一个特征向量.求a,b的值.
设A3×3是秩为1的实对称矩阵,λ1=2是A的一个特征值,其对应的特征向量为a1=(-1,1,1)T,则方程组Ax=0的基础解系为()
设f(x)连续,且∫0xtf(2x-t)dt=1/2arctanx2,f(1)=1,求∫12f(x)dx.
将函数f(x)=xarctanx-展开为x的幂级数。
设0<a<1,证明:方程arctanx=ax在(0,+∞)内有且仅有一个实根.
随机试题
凡是有关经济社会发展和人民群众切身利益的事项,都要进行合法性、合理性、可行性和可控性评估。()
某县检察机关以抢夺罪对被告人柳桌提起公诉。县人民法院经过审理判处柳某有期徒刑3年。宣判后,柳某表示悔罪服判,决不上诉,出庭支持公诉的检察人员也表示法院判决结果合理合法,检察机关不会抗诉。问题:(1)就本案而言,法院是否可以在宣判后就将柳某送交监狱服刑,为什
依据《建设工程安全生产管理条例》规定,下列关于设计单位的安全责任不正确的是( )。
施工图预算的审查方法包括()。
基金信息披露的及时性原则要求以最快的速度公开信息,在重大事件发生之日起()日内披露临时报告。
在()中,使用当前及历史价格对未来进行预测将是徒劳的。
A公司现销方式每年可销售产品800000件,单价1元,变动成本率为70%,固定成本为120000元,该公司尚有30%的剩余生产能力。为了扩大销售,该公司拟改用赊销政策,信用政策准备调整为“3/0,2/30,N/60”。有关部门预测,年销售量可增至10000
资本资产定价模型的目的是()。
《蒙娜丽莎》《最后的晚餐》是画家()的著名绘画作品。
下图所示的数据模型属于
最新回复
(
0
)