首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量(X,Y)的联合概率密度为 (Ⅰ)求随机变量Y关于X=x的条件密度; (Ⅱ)讨论随机变量X与Y的相关性和独立性.
设随机变量(X,Y)的联合概率密度为 (Ⅰ)求随机变量Y关于X=x的条件密度; (Ⅱ)讨论随机变量X与Y的相关性和独立性.
admin
2017-11-22
81
问题
设随机变量(X,Y)的联合概率密度为
(Ⅰ)求随机变量Y关于X=x的条件密度;
(Ⅱ)讨论随机变量X与Y的相关性和独立性.
选项
答案
(Ⅰ)先求X的边缘密度.对任意x>0,有 f
X
(x)=∫
—∞
+∞
f(x,y)dy=[*]∫
x
+∞
(y
2
一x
2
)e
—y
dy =[*]∫
x
+∞
y
2
de
—y
+[*]x
2
∫
—∞
+∞
de
—y
=[*](y
2
e
—y
+2ye
—y
+2e
—y
)|
x
+∞
—[*]x
2
e
—x
=[*](x
2
e
—x
+2xe
—x
+2e
—x
一x
2
e
—x
) =[*](1+x)e
—x
; 对于任意x≤0,有一x<y<+∞,因此 f
X
(x)=[*]∫
—x
+∞
(y
2
一x
2
)e
—y
dy =[*](y
2
e
—y
+2ye
—y
+2e
—y
)|
—x
+∞
—[*]x
2
e
x
=[*](x
2
e
x
—2xe
x
+2e
x
)一[*]x
2
e
x
=[*](1一x)e
x
=[*](1+|x|)e
—|x|
. 于是,X的边缘密度f
X
(x)=[*](1+|x|)e
—|x|
,一∞<x<+∞. 故对于任意x,随机变量Y关于X=x的条件密度为 [*] (Ⅱ)为判断独立性,需再求Y的边缘密度 [*] 由于f
X
(x).f
Y
(y)≠f(x,y),故X,Y不独立. 又EXY=∫
—∞
b
xyf(x,y)dxdy=[*]∫
υ
+∞
[ye
—y
∫
—y
y
x(y
2
一x
2
)dx]dy=0, EX=∫
—∞
+∞
xf
X
(x)dx=[*]∫
—∞
+∞
(1+|x|)e
—|x|
dx=0. 所以cov(X,Y)=EX—Y—E.Y.EY=0.从而可知X与Y既不独立,也不相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/CnX4777K
0
考研数学三
相关试题推荐
设函数f0(x)在(一∞,+∞)内连续,fn(x)=∫0xfn-1(t)df(n=1,2,…).
设的敛散性,并证明你的结论.
设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,又此曲线上的点(0,1)处的切线方程为y=x+1,求该曲线方程,并求函数y(x)的极值.
设总体X~N(μ,σ12),Y~N(μ,σ22),且X,Y相互独立,来自总体X,Y的样本均值为期望.
证明:,其中a>0为常数.
设f(x)在[0,1]上二阶可导,且f"(x)<0.证明:∫01f(x)dx≤.
独立地重复进行某项试验,直到成功为止,每次试验成功的概率为p,假设前5次试验每次的试验费用为10元,从第6次起每次的试验费用为5元.试求这项试验的总费用的期望值a.
设X,Y是相互独立的随机变量,它们都服从参数为n,p的二项分布,证明:Z=X+Y服从参数为2n,p的二项分布.
一实习生用一台机器接连生产了三个同种零件,第i个零件是不合格品的概率(i=1,2,3),以X表示三个零件中合格品的个数,求X的分布律.
随机试题
M-Q型显影液组合是
唇、舌、耳、鼻及眼睑断裂伤,离体组织尚完好,应尽量将离体组织缝回原处,但一般不宜超过
患者女性,26岁,于2000年4月20日因“宫外孕、出血性休克”急诊手术。人手术室时,神志清,T37.2℃,P92次/分,BP13.3/8.0kPa,硬膜外麻醉成功后,突然出现意识丧失,面色苍白,口唇四肢末梢严重发绀,脉搏、心音、血压均测不出,血氧饱和
关于基金分类的意义,以下选项中表述不正确的是()。
债权人行使撤销权的必要费用,由()承担。
某蔬菜食品公司因销售假酒,被相关部门处以罚款5000元、停业整顿的行政处罚。相关部门的上述处罚()。
Shakespeare’slifetimewascoincidentwithaperiodofextraordinaryactivityandachievementinthedrama.【F1】Bythedateofh
无符号二进制整数01110101转换成十进制整数是________。
WhenwastheWorldBankofficiallyfounded?
Anewstudyconductedhasdemonstratedthatpublictransportismoreefficientthancars.Thestudycomparedtheproportionofw
最新回复
(
0
)