首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=,则下列关于f(x)的单调性的结论正确的是 ( )
设f(x)=,则下列关于f(x)的单调性的结论正确的是 ( )
admin
2018-12-21
52
问题
设f(x)=
,则下列关于f(x)的单调性的结论正确的是 ( )
选项
A、在区间(一∞,0)内是严格单调增加,在(0,﹢∞)内是严格单调减少.
B、在区间(一∞,0)内是严格单调减少,在(0,﹢∞)内是严格单调增加.
C、在区间(一∞,0)与(0,﹢∞)内都是严格单调增加.
D、在区间(一∞,0)与(0,﹢∞)内都是严格单调减少.
答案
C
解析
取其分子,令φ(x)=xe
x
-e
x
﹢2,
有φ(0)=1﹥0,φ
’
(x)=xe
x
,当x﹤0时,φ
’
(x)﹤0;当x﹥0时,φ
’
(x)﹥0.
所以当x﹤0时,φ(x)﹥0;当x﹥0时,也有φ(x)﹥0.故知在区间(-∞,0)与(0,﹢∞)内均有f
’
(x)﹥0.
从而知f(x)在区间(-∞,0)与(0,﹢∞)内均为严格单调增加.
转载请注明原文地址:https://kaotiyun.com/show/DAj4777K
0
考研数学二
相关试题推荐
(2012年)设(Ⅰ)计算行列式|A|;(Ⅱ)当实数a为何值时,方程组Aχ=β有无穷多解,并求其通解.
(2013年)设二次型f(χ1,χ2,χ3)=2(a1χ1+a2χ2+a3χ3)+(b1χ1+b2χ2+b3χ3)2,记(Ⅰ)证明二次型f对应的矩阵为2ααT+ββT.(Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为
(2011年)设函数f(χ)在χ=0处可导,且f(0)=0,则=【】
(1992年)求曲线y=的一条切线l,使该曲线与切线l及直线χ=0,χ=2所围成平面图形面积最小.
由曲线y=lnx及直线x+y=e+1,y=0所围成的平面图形的面积可用二重积分表示为____________,其值等于____________.
二次积分∫02dxf(x,y)dy写成另一种次序的积分是()
计算∫arcsin(a>0是常数).
设A是n×m矩阵,B是m×n矩阵,其中n<m,E是n阶单位矩阵.若AB=E,证明:B的列向量组线性无关.
已知的一个特征向量.(1)试确定a,b的值及特征向量ξ所对应的特征值;(2)问A能否相似于对角阵?说明理由.
[*]所以原式[*]
随机试题
下列哪种类型为不累及肺泡的肺气肿()
若蛔虫病患儿并发了不完全肠梗阻,其治疗措施不妥的是
肺癌伴有类癌综合征时不可能出现的症状是
政府公共投资类项目由行业工程咨询机构投标来承揽的咨询服务是()。
监理工程师在设备安装阶段应审核的工作有()。
下列选项中,属于附加刑的是()。
医院和疗养院的病房楼内相邻护理单元之间采用耐火极限不低于()h的防火隔墙分隔,隔墙上的门为乙级防火门,设置在走道上的防火门为常开防火门。
A公司从B汽车运输公司租入5辆载重汽车,双方签订的合同规定,5辆载重汽车的总价值为240万元,租期10个月,月租金为1.28万元。则A公司应缴印花税额()。
A、 B、 C、 D、 AB项中的E开口应朝向B;C项中的正面F应顺时针旋转180度;D项中的B所在面应为F,且F开口向下。因此本题选A。
通过对海豚间通信联系的深入研究,科学家发现,齐普夫定律和信息论中的熵值概念可以很好地为分析外星信号服务。在接收到地外任何可疑信号后,应该首先用齐普夫定律分析是否存在一定斜率直线特征,如果有某种特征,则证明其并非毫无意义的噪声。然后进行熵值分析,这样可以不必
最新回复
(
0
)