首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶反对称矩阵, (Ⅰ)证明:A可逆的必要条件是n为偶数;当n为奇数时,A*是对称矩阵; (Ⅱ)举一个4阶不可逆的反对称矩阵的例子; (Ⅲ)证明:如果λ是A的特征值,那么—λ也必是A的特征值.
设A是n阶反对称矩阵, (Ⅰ)证明:A可逆的必要条件是n为偶数;当n为奇数时,A*是对称矩阵; (Ⅱ)举一个4阶不可逆的反对称矩阵的例子; (Ⅲ)证明:如果λ是A的特征值,那么—λ也必是A的特征值.
admin
2022-04-08
57
问题
设A是n阶反对称矩阵,
(Ⅰ)证明:A可逆的必要条件是n为偶数;当n为奇数时,A
*
是对称矩阵;
(Ⅱ)举一个4阶不可逆的反对称矩阵的例子;
(Ⅲ)证明:如果λ是A的特征值,那么—λ也必是A的特征值.
选项
答案
(Ⅰ)按反对称矩阵定义:A
T
=一A,那么 |A|=|A
T
|=|—A|=(—1)
n
|A|,即[1—(—1)
n
]|A|=0. 若n=2k+1,必有|A|=0.所以A可逆的必要条件是n为偶数. 因A
T
=一A,由(A
*
)
T
=(A
T
)
*
有 (A
*
)
T
=(A
T
)
*
=(一A)
*
. 又因(kA)
*
=k
n—1
A
*
,故当n=2k+1时,有 (A
*
)
T
=(—1)
2k
A
*
=A
*
, 即A
*
是对称矩阵. (Ⅱ)例如,A=[*]是4阶反对称矩阵,且不可逆. (Ⅲ)若λ是A的特征值,有f λE—A J=0,那么 |—λE—A|=|(一λE—A)
T
|=|—λE—A
T
|=|—λE+A| =|一(λE—A)|=(一1)
n
|λE—A|=0, 所以一λ是A的特征值.
解析
转载请注明原文地址:https://kaotiyun.com/show/DBf4777K
0
考研数学二
相关试题推荐
设f(χ)=,则f(χ)().
设X1,X2,…,Xn相互独立,且Xi(i=1,2,…)服从参数为λ(>0)的泊松分布,则下列选项正确的是()
齐次线性方程组的系数矩阵记为A.若存在3阶矩阵B≠O,使得AB=O,则()
设f(x)是连续函数,F(x)是f(x)的原函数,则
设n阶矩阵A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…,γn),记向量组(Ⅰ):α1,α2,…,αn;(Ⅱ):β1,β2,…,βn;(Ⅲ):γ1,γ2,…,γn,若向量组(Ⅲ)线性相关,则().
设f(x)在[a,+∞)上二阶可导,f(a)<0,f’(a)=0,且f’’(x)≥k(k>0),则f(x)在(a,+∞)内的零点个数为().
设A县n阶矩阵,α是n维列向量,且则线性方程组
设函数f(x)连续,若,其中区域Duv为图1—4—1中阴影部分,则=()
随机试题
在破产程序中,债权人会议未能依法通过管理人的财产分配方案时,由人民法院裁定。根据《企业破产法》的规定,有权对该裁定提出复议的债权人是()。
ICU护理质量的第一责任人是【】
德育是指教育者培养受教育者【】
早期食管癌最常用的治疗方法是
下列药物中.既可祛风湿,利关节,还具有解毒功效的是
患者,女,42岁。从高处跌下,头部着地,当时昏迷约10分钟后清醒,左耳道流出血性液,被家属送来急诊。经过急救后,患者意识清楚,拟采取进一步治疗。患者因认为医院过度治疗,所以拒绝治疗。正确的处理措施是
超过8层的高层公共建筑,电梯可成组地排列于电梯厅内,一般每组电梯不宜()。
工程建设重要的通用的试验、检验和评定方法等标准属于()。
根据风险收益对等观念,在一般情况下,各筹资方式资本成本由低到高依次为()。
某单位今年新进了3个工作人员,可以分配到3个部门,但每个部门至多只能接收2个人,问共有几种不同的分配方案?()
最新回复
(
0
)