首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,且非齐次线性方程组AX=b满足r(A)==r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个。
设A是m×n矩阵,且非齐次线性方程组AX=b满足r(A)==r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个。
admin
2019-09-29
70
问题
设A是m×n矩阵,且非齐次线性方程组AX=b满足r(A)=
=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个。
选项
答案
因为r(A)=r<n,所以齐次线性方程组AX=0的基础解系含有n-r个线性无关的解向量,设为ξ
1
,ξ
2
,...,ξ
n-r
. 设η
0
为方程组AX=b的一个特解, 令Β
0
=η
0
,Β
1
=ξ
1
+η
0
,Β
2
=ξ
2
+η
0
...,Β
n-r
=ξ
n-r
+η
0
,显然Β
0
,Β
1
,Β
2
,Β
n-r
为方程组AX=b的一组解。 令k
0
Β
0
+k
1
Β
1
+...+k
n-r
Β
n-r
=0,即 (k
0
+k
1
+...+k
n-r
)η
0
+k
1
ξ
1
+k
2
ξ
2
+...+k
n-r
ξ
n-r
=0, 上式两边左乘A得(k
0
+k
1
+...+k
n-r
)b=0, 因为b为非零列向量,所以k
0
+k
1
+...+k
n-r
=0,于是k
1
ξ
1
+k
2
ξ
2
+...+k
n-r
ξ
n-r
=0,注意到ξ
1
,ξ
2
,...,ξ
n-r
线性无关,所以k
1
=k
2
=...=k
n-r
=0,故Β
0
,Β
1
,Β
2
,...,Β
n-r
线性无关,即方程组AX=b存在由n-r+1个线性无关的解向量构成的向量组,设Β
1
,Β
2
,...,Β
n-r+2
为方程组AX=b的一组线性无关解, 令γ
1
=Β
2
-Β
1
,γ
2
=Β
3
-Β
1
,...,γ
n-r+1
=Β
n-r+2
-Β
1
,根据定义,易证γ
1
,γ
2
,...,γ
n-r+1
线性无关,又γ
1
,γ
2
,...,γ
n-r+1
为齐次线性方程组AX=0的一组解,即方程组AX=0含有n-r+1个线性无关的解,矛盾,所以AX=b的任意n-r+2个解向量都是线性相关的,所以AX=b的线性无关的解向量的个数最多为n-r+1个。
解析
转载请注明原文地址:https://kaotiyun.com/show/DGA4777K
0
考研数学二
相关试题推荐
设A=(α1,α2,α3)是三阶矩阵,则|A|=()
设又,则().
设A为n阶实矩阵,AT是A的转置矩阵,对于线性方程组(I):Ax=0和(Ⅱ):ATAx=0必有
设矩阵A=(α1,α2,α3,α4)经行初等变换为矩阵B=(β1,β2,β3,β4),且α1,α2,α3线性无关,α1,α2,α3,α4线性相关,则().
已知α1是矩阵A属于特征值λ=2的特征向量,α2,α3是矩阵A属于特征值λ=6的线性无关的特征向量,那么矩阵P不能是()
设A=(aij)3×3,是实正交矩阵,且a11=1,b=(1,0,0)T,则线性方程组Ax=b的解是________.
微分方程y2dχ+(χ2-χy)dy=0的通解为_______.
设三阶行列式D3的第二行元素分别为1、一2、3,对应的代数余子式分别为一3、2、1,则D3=_________。
若α1,α2,α3是三维线性无关的列向量,A是三阶方阵,且Aα1=α1+α2,Aα2=α2+α3,Aα3=α3+α1,则|A|=_______.
用变量代换x=sint将方程化为y关于t的方程,并求微分方程的通解.
随机试题
戏曲作品:《长生殿》
关于同工酶的描述不正确的是
五脏之中,主藏血的是
体内生物转化中能与非营养物结合的是
卵巢良性肿瘤最常见的并发症是( )
医师常选用通心络胶囊与诺迪康胶囊治疗心血管病,二者均有的功能包括
背景资料:某施工单位承包一涵洞工程施工并与项目法人签订了施工承包合同。合同约定:(1)合同总价420万元;(2)工程2013年9月25日开工,工期12个月;(3)工程预付款按10%计,并在各月工程进度款内平均扣回;
下列选项中不属于蓝海战略重建市场边界的基本法则的是()。
中国从新民主主义社会向社会主义社会转变的开端是()
Gotapenhandy?Tobestestimateyourstartupcosts,you’llneedtomakealistandthemoredetailedthebetter.Asmartwayt
最新回复
(
0
)