首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是一个可逆实对称矩阵,记Aij是它的代数余子式.二次型 f(x1,x2,…,xn)= (1)用矩阵乘积的形式写出此二次型. (2)f(x1,x2,…,xn)的规范形和XTAX的规范形是否相同?为什么?
设A是一个可逆实对称矩阵,记Aij是它的代数余子式.二次型 f(x1,x2,…,xn)= (1)用矩阵乘积的形式写出此二次型. (2)f(x1,x2,…,xn)的规范形和XTAX的规范形是否相同?为什么?
admin
2018-11-20
58
问题
设A是一个可逆实对称矩阵,记A
ij
是它的代数余子式.二次型
f(x
1
,x
2
,…,x
n
)=
(1)用矩阵乘积的形式写出此二次型.
(2)f(x
1
,x
2
,…,x
n
)的规范形和X
T
AX的规范形是否相同?为什么?
选项
答案
(1)由于A是实对称矩阵,它的代数余子式A
ij
=A
ji
,[*],并且A
-1
也是实对称矩阵,其(i,j)位的元素就是A
ij
/|A|,于是f(x
1
,x
2
,…,x
n
)=X
T
A
-1
X. (2)A
-1
的特征值和A的特征值互为倒数关系,因此A
-1
和A的正的特征值的个数相等,负的特征值的个数也相等,于是它们的正,负惯性指数都相等,从而A
-1
和A合同,f(x
1
,x
2
,…,x
n
)和X
T
AX有相同的规范形.
解析
转载请注明原文地址:https://kaotiyun.com/show/DfW4777K
0
考研数学三
相关试题推荐
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组Ax=0与BX=0有公共的非零解.
a,b取何值时,方程组有解?
设随机变量X的密度函数为f(x)=求X的分布函数F(x).
设二维随机变量(X,Y)在区域D:x2+y2≤9a2(a>0)上服从均匀分布,p=P(X2+9Y2≤9a2),则().
用变量代换x=sint将方程(1一x2)一4y=0化为y关于t的方程,并求微分方程的通解.
设有微分方程y’一2y=φ(x),其中φ(x)=在(一∞,+∞)求连续函数y(x),使其在(一∞,1)及(1,+oo)内都满足所给的方程,且满足条件y(0)=0.
设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.
已知A,B为三阶非零方阵,为齐次线性方程组BX=0的3个解向量,且AX=β3有非零解.(1)求a,b的值;(2)求BX=0的通解.
设有2个四元齐次线性方程组:方程组①和(Ⅱ)是否有非零公共解?若有,求出所有的非零公共解?若没有,则说明理由.
随机试题
下列哪项不是慢性盆腔炎的常见证型
甲亢病人浸润性突眼下列描述中哪项不妥
土地法律制度的核心内容是()。
横道图法是分析建设工程项目施工成本偏差的常用方法,其特点包括()。
红霞公司为增值税一般纳税人,适用增值税税率为17%,该公司2014年8月初的资产总额为1560000元,负债总额为936000元。8月份发生的交易或事项如下:(1)采购生产用原材料一批,取得的增值税专用发票注明买价为203295元,增值税为
现在所说的“导游”概念,下面表述正确的是()。
尽管近年来我国引进不少人才,但真正顶尖的领军人才还是凤毛麟角。就全球而言,人才特别是高层次人才紧缺已呈常态化、长期化趋势。某专家由此认为,未来10年,美国、加拿大、德国等主要发达国家对高层次人才的争夺将进一步加剧,而发展中国家的高层次人才紧缺状况更甚于发达
Manyyoungpeoplegotouniversitywithoutclearideaofwhattheyaregoingtodoafterwards.Ifastudentgoestoauniversity
10GbpsEthernet采用的标准是IEEE()。
Hecamebacklate,______whichtimealltheguestshadalreadyleft.
最新回复
(
0
)