首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是任一n(n≥3)阶方阵,A*是其伴随随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=( ).
设A是任一n(n≥3)阶方阵,A*是其伴随随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=( ).
admin
2019-05-10
63
问题
设A是任一n(n≥3)阶方阵,A
*
是其伴随随矩阵,又k为常数,且k≠0,±1,则必有(kA)
*
=( ).
选项
A、kA
*
B、k
n-1
A
*
C、k
n
A
*
D、k
-1
A
*
答案
B
解析
利用伴随矩阵的性质或直接利用命题2.2.2.2(5)判别之.
解一 由命题2.2.2.2(5)知,仅(B)入选.
解二 对任何n阶矩阵都成立的结论,对特殊的n阶可逆矩阵也成立.设A可逆,有(kA)
*
=∣A∣(kA)
-1
=k
n
∣A∣(A
-1
/k)=k
n-1
∣A∣A
-1
=k
n-1
A
*
.仅(B)入选.
转载请注明原文地址:https://kaotiyun.com/show/DjV4777K
0
考研数学二
相关试题推荐
设n元齐次线性方程组Ax=0的系数矩阵A的秩为r,则Ax=0有非零解的充分必要条件是()
设A,B均为n阶可逆矩阵,且(A+B)2=E,则(E+BA一1)一1=()
设f(χ)在[-a,a](a>0)上有四阶连续的导数,存在.(1)写出f(χ)的带拉格朗日余项的麦克劳林公式。(2)证明:存在ξ1,ξ2∈[-a,a],使得
设曲线=1(0<a<4)与χ轴、y轴所围成的图形绕z轴旋转所得立体体积为V1(a),绕y轴旋转所得立体体积为V2(a),问a为何值时,V1(a)+V2(a)最大,并求最大值.
设y=f(χ)为区间[0,1]上的非负连续函数.(1)证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(χ)为曲边的曲边梯形的面积;(2)设f(χ)在(0,1)内可导,且f′(χ)>-,
设A为m×n阶矩阵,且r(A)=m<n,则().
设f(χ)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(χ)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,b),使得f′(ξ)>0,f′(η)<0.
证明:,其中a>0为常数.
已知0是A=的特征值,求a和A的其他特征值及线性无关的特征向量.
设矩阵A=,行列式|A|=一1,又A*的属于特征值λ0的一个特征向量为α=(一1,一1,1)T,求a,b,c及λ0的值。
随机试题
在坐标图上,表示收入和消费关系的45°线意味着()
B公司通过租赁方式取得一项公允价值为1950万元的管理用固定资产,租赁期开始日为2011年1月1日,固定资产使用期4年,租赁期2年,租赁期满归还出租方,合同利率6%,每年年末支付租金1000万元,承租方担保余值100万元,另以银行存款支付初始直接费用等10
下列哪种情况下动脉CO2分压降低?
针灸治疗惊悸怔忡的基本处方是针灸治疗水饮内停证之惊悸怔忡的配穴是
设总体X的概率密度为而X1,X2,…,Xn是来自该总体的样本,则未知参数θ的最大似然估计量是()。
国际收支下的经常项目包括()。
所有水平上乘、特色鲜明的大学,无一不是办学主体在公平的市场竞争环境下逐步形成的。当前市场的公平竞争机制还存在着扭曲现象,在办学资源的配置还主要是靠各级政府“有形的手”操控的情况下,高校的办学模式趋同、办学特色缺失就是不可避免的“天然产物”了。解决这个问题的
A.黄色黏稠脓液B.淡黄稀薄脓液C.翠绿色、稍黏稠、有酸臭味的脓液D.灰白或灰褐色、有明显腐败坏死臭味的脓液E.稀薄污浊、暗灰色米汤样、夹杂干酪样坏死物的脓液金黄色葡萄球菌感染形成的脓液为()。
警察甲因为公民吴某举报自己受贿而怀恨在心,遂用他人手机向某军官发了一条短信,捏造吴某与其妻同居的事实,该军官信任自己妻子未予理睬,甲的行为构成()。(2012一专一9)
InBritain,highschoolstudentscanrunabusiness!Eachbusinessrunsforoneyear.Whentheystarttheirbusiness,theyborro
最新回复
(
0
)