首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设(I)和(Ⅱ)是两个四元齐次线性方程组,(I)的系数矩阵为 (Ⅱ)的一个基础解系为η1=(2,一1,a+2,1)T,η2=(一1,2,4,a+8)T. (1)求(I)的一个基础解系; (2)a为什么值时(I)和(Ⅱ)有公共非零解?此时求出全部公共非零解
设(I)和(Ⅱ)是两个四元齐次线性方程组,(I)的系数矩阵为 (Ⅱ)的一个基础解系为η1=(2,一1,a+2,1)T,η2=(一1,2,4,a+8)T. (1)求(I)的一个基础解系; (2)a为什么值时(I)和(Ⅱ)有公共非零解?此时求出全部公共非零解
admin
2020-03-05
50
问题
设(I)和(Ⅱ)是两个四元齐次线性方程组,(I)的系数矩阵为
(Ⅱ)的一个基础解系为η
1
=(2,一1,a+2,1)
T
,η
2
=(一1,2,4,a+8)
T
.
(1)求(I)的一个基础解系;
(2)a为什么值时(I)和(Ⅱ)有公共非零解?此时求出全部公共非零解.
选项
答案
(1)把(I)的系数矩阵用初等行变换化为简单阶梯形矩阵 [*] 得到(I)的同解方程组 [*] 对自由未知量x
3
,x
4
赋值,得(I)的基础解系γ
1
=(5,一3,1,0)
T
,γ
3
=(一3,2,0,1)
T
. (2)(Ⅱ)的通解为c
1
η
1
+c
2
η
2
=(2c
1
—c
2
,一c
1
+2c
2
,(a+2)c
1
+4c
2
,c
1
+(a+8)c
2
)
T
. 将它代入(I),求出为使c
1
η
1
+c
2
η
2
也是(I)的解(从而是(I)和(Ⅱ)的公共解),c
1
,c
2
应满足的条件(过程略)为: [*] 于是当a+1≠0时,必须c
1
=c
2
=0,即此时公共解只有零解. 当a+1=0时,对任何c
1
,c
2
,c
1
η
1
+c
2
η
2
都是公共解.从而(I),(Ⅱ)有公共非零解.此时它们的公共非零解也就是(Ⅱ)的非零解:c
1
η
1
+c
2
η
2
,c
1
,c
2
不全为0.
解析
转载请注明原文地址:https://kaotiyun.com/show/DwS4777K
0
考研数学一
相关试题推荐
设三阶行列式D3的第二行元素分别为1,—2,3,对应的代数余子式分别为—3,2,1,则D3=________。
函数f(x)=arctan展开成x的幂级数为()
设an为正项级数,下列结论中正确的是
函数f(x)=的可去间断点的个数为()
设α1,α2,...,αs均为n维向量,下列结论不正确的是
已知f1(x),f2(x)均为随机变量的概率密度函数,则下列函数可以作为概率密度函数的是()
在区间(0,1)中随机地取出两个数,则“两数之积小于”的概率为________。
设三元函数点M(0,0,0),始于点M的单位向量l=(cosα,cosβ,cosγ).考虑点M处的偏导数则()
设X1,X2,X3,X4是来自正态总体X~N(μ,σ2)的样本,则统计量服从的分布是_________
设总体X~N(0,σ2),参数σ>0未知,X1,X2,…,Xn是取自总体X的简单随机样本(n>1),令估计量求方差。
随机试题
以下所列抗菌药物的给药途径中,最正确的是
CT扫描中常用的FOV是指
瘢痕性类天疱疮在口腔中病损的最常见部位是
潮湿环境下,照明电源的电压不大于()V。
新增付款方式。付款方式编码:01付款方式名称:银行汇票进行票据管理:不需要
以下关于公司型基金的表述中,正确的是()。
将细菌培养物由供氧条件转为厌氧条件,下列过程中会加快的一种是()。
王充认为教育的最高目标是培养“鸿儒”,其有别于儒生、通人、文人的显著特征是
表达式3.6-5/2+1.2+5%2的值是
Whydoestheprofessormention$20bill?
最新回复
(
0
)