首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶非奇异矩阵,α为n维列向量.b为常数.记分块矩阵 其中A*是A的伴随矩阵,I为n阶单位矩阵. 证明矩阵Q可逆的充分必要条件是αTA—1α≠b.
设A为n阶非奇异矩阵,α为n维列向量.b为常数.记分块矩阵 其中A*是A的伴随矩阵,I为n阶单位矩阵. 证明矩阵Q可逆的充分必要条件是αTA—1α≠b.
admin
2018-07-31
52
问题
设A为n阶非奇异矩阵,α为n维列向量.b为常数.记分块矩阵
其中A
*
是A的伴随矩阵,I为n阶单位矩阵.
证明矩阵Q可逆的充分必要条件是α
T
A
—1
α≠b.
选项
答案
由(1)得 |PQ|=|A|
2
(b一α
—1
A
—1
α),而 |PQ|=|P||Q|.且由条件知 P|=|A|≠0→|Q|=|A|(b一α
T
A
—1
α),因而Q可逆→|Q|≠0→b≠α
T
A
—1
α.
解析
转载请注明原文地址:https://kaotiyun.com/show/Dwg4777K
0
考研数学一
相关试题推荐
已知,求a,b的值.
设由自动生产线加工的某种零件的内径X(毫米)服从正态分布N(μ,1),内径小于10或大于12为不合格品,其余为合格产品.销售合格品获利,销售不合格产品亏损,已知销售利润T(单位:元)与销售零件的内径X有如下关系:问平均内径μ取何值时,销售一个零件的
设A=有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
设f(x)=x+x2+…+xn(n≥2).(1)证明方程f(x)=1有唯一的正根x;(2)求.
假设随机变量X与Y相互独立,如果X服从标准正态分布,Y的概率分布为P{Y=-1}=,求:(Ⅰ)Z=XY的概率密度fZ(z);(II)V=|X—Y|的概率密度fV(v)。
设二次型f(x1,x2,x3)=+2x1x3—2x2x3,(Ⅰ)求二次型f的矩阵的所有特征值;(Ⅱ)若二次型f的规范形为,求a的值.
已知二次型f(x1,x2,x3)=(1一a)+2(1+a)x1x2的秩为2.(Ⅰ)求a的值;(Ⅱ)求正交变换x=Qy,把f(x1,x2,x3)化成标准形;(Ⅲ)求方程f(x1,x2,x3)=0的解.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0。证明:向量组α,Aα,…,Ak-1α是线性无关的。
设n阶方阵A、B相似,A2=2E,则行列式|AB+A-B-E|=_______。
设α1,α2,α3,β1,β2都是4维列向量,且4阶行列式|α1,α2,α3,β1|=m,|α1,α2,β2,α3|=n,则4阶行列式|α3,α2,α1,β1,β2|等于()
随机试题
设y=sin(lnx),则y’(1)=_________。
膀胱炎患者的尿液具有哪些特征
患者,女,48岁。有口腔黏膜粗涩感,进刺激食物感疼痛半年,检查发现其舌背左右各一黄豆大小白色病损,浅淡,表面乳头消失、质软。双颊自口角至颊脂垫尖处广泛白色角化网纹,基底充血发红。双舌缘舌腹也可见类似病损。询问病史及临床检查时应注意以下几点,不包括
1,2,3,…,25这25个数字中的质数个数为().
市场经济运行的基本规律包括()。
某单位因施工需要,须砍伐单位内的几株梧桐树,在给所在街道办事处绿化办公室行文时,宜用()。
下面的三角形表示某省五种产业的数量按地域划分(城区、郊区、乡村)所占百分比。图上的字符表示各种工业,三角形的顶点表示100%,与该顶点相对的基线表示0%。例如,该省所有的加工企业中,约有70%地处城市,5%位于乡村,25%在郊区。大约有百分之几的服务
中国历史上第一个全国性的专职警察机构是清朝的()。
调查表明,使得大学生学习成绩下降的一个重要因素是:很多大学生玩网络游戏。为了提高大学生的学习成绩,学校作出决定:禁止在校园网上玩网络游戏。以下哪项最能对学校的决定进行质疑?
数据是企业中最【】的因素,它又是企业所有运行活动的数字化特征。
最新回复
(
0
)