首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A和B均是m×n矩阵,秩r(A)+r(B)=n,若BBT—E且B的行向量是齐次方程组Ax=0的解,P是m阶可逆矩阵,证明:矩阵PB的行向量是Ax=0的基础解系.
设A和B均是m×n矩阵,秩r(A)+r(B)=n,若BBT—E且B的行向量是齐次方程组Ax=0的解,P是m阶可逆矩阵,证明:矩阵PB的行向量是Ax=0的基础解系.
admin
2017-07-26
86
问题
设A和B均是m×n矩阵,秩r(A)+r(B)=n,若BB
T
—E且B的行向量是齐次方程组Ax=0的解,P是m阶可逆矩阵,证明:矩阵PB的行向量是Ax=0的基础解系.
选项
答案
由r(B)≥r(BBT)=r(E)=m,得到r(B)=m.于是B的行向量组线性无关,且n一r(A)=m. 根据题设,B的行向量是Ax=0的解,知AB
T
=0.于是 A(PB)
T
=AB
T
P
T
=0P
T
=0. 因此,PB的m个行向量是Ax=0的解.又矩阵P可逆,于是r(PB)=r(B)=m,从而PB的行向量线性无关,所以PB的行向量是Ax=0的基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/DyH4777K
0
考研数学三
相关试题推荐
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3一2α1+3α3.求矩阵A*一6E的秩.
设函数f(x)在区间[0,4]上连续,且,求证:存在ξ∈(0,4)使得f(ξ)十f(4一ξ)=0.
k为何值时,线性方程组,有唯一解、无解、有无穷多组解?在有解的情况下,求出其全部解.
设b为常数.设L与l从x=1延伸到x→+∞之间的图形的面积A为有限值,求b及A的值.
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小.
设f〞(x)存在,求下列函数y的二阶导数d2y/dx2:(1)y=f(e-x);(2)y=ln[f(x)].
设f(x)在[a,b]上连续,在(a,6)内二阶可导,f(a)=f(b)=0,∫ab)dx=0.证明:(Ⅰ)存在ξi∈(a,b),使得f(ξi)=f’’(ξi)(i=1,2);(Ⅱ)存在η∈(a,b),使得f(η)=f’’(η).
n为给定的自然数,极限=____________.
当x→1时,f(x)=的极限为().
设函数f(x)在点x0的某邻域内有定义,且f(x)在点x0处间断,则在点x0处必定间断的函数为()
随机试题
下列选项中,作品与作者对应正确的是()。
成本无差别点业务量是指使两个备选方案()
______,是国家为保护公务员的身体健康,每年安排公务员集中一段时间进行轮休作出的规定。
淋证的病位在癃闭的病位在
针对不同的广告目标,房地产广告效果一般可分为()和信息传播效果。
嘉善的西塘镇有“吴根越角”和“越角人家”之称,其风景特色是()。
秦始皇“焚书坑儒”,汉武帝“独尊儒术”主要取决于()。
土壤沙化是指良好的或可利用的土壤变成含沙量较多的土地,甚至变成沙漠的过程。导致土壤沙化的主要原因是()。
[*]
It’shardtobelievethatDr.JudahFolkman,thepioneeringcancerresearcherwhosuccumbedtoaheartattackonMondayatthea
最新回复
(
0
)