首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,+∞)上连续,在(0,+∞)内可导,当xε(0,+∞)时f(x)>0且单调上升,x=g(y)为y=f(x)的反函数,它们满足=t3(t≥0),则f(x)的表达式是_________________________。
设f(x)在[0,+∞)上连续,在(0,+∞)内可导,当xε(0,+∞)时f(x)>0且单调上升,x=g(y)为y=f(x)的反函数,它们满足=t3(t≥0),则f(x)的表达式是_________________________。
admin
2018-11-16
57
问题
设f(x)在[0,+∞)上连续,在(0,+∞)内可导,当xε(0,+∞)时f(x)>0且单调上升,x=g(y)为y=f(x)的反函数,它们满足
=t
3
(t≥0),则f(x)的表达式是_________________________。
选项
答案
f(x)=x
2
(x≥0)
解析
方法一:由定积分的几何意义知:
=由曲线y=f(x),x、y轴及直线x=t>0所围成的曲边梯形的面积,
=由曲线x=g(y),y轴(y≥f(0))及直线y=f(t)所围成的曲边三角形的面积。x=g(y)与y=f(x)互为反函数,代表同一条曲线,它们面积之和是长方形面积(边长分别为t与f(t)),见下图。
于是
,因此tf(t)=t
3
,f(t)=t
2
(t≥0),即f(x)=x
2
(x≥0)。
方法二:先化简题设方程的左端式子,有
于是
,即tf(t)=t
3
,f(t)=t
2
(t≥0),因此f(x)=x
2
(x≥0)。
方法三:将题设方程两边求导得
,即f(t)+g[f(t)]f
’
t=3t
2
,f(t)=tf
’
(t)=3t
2
,亦即[tf(t)]
’
=3t
2
。(原方程中令t=0,等式自然成立,不必另加条件),将上式积分得tf(t)=t
3
+C,即
,因f(t)在[0,+∞)上连续,故必有C=0,因此f(x)=x
2
(x≥0)。
转载请注明原文地址:https://kaotiyun.com/show/DyW4777K
0
考研数学三
相关试题推荐
设g(x)=∫0xf(u)du,其中f(x)=则g(x)在(0,2)内().
设两台同样的记录仪,每台无故障工作的时间服从参数为5的指数分布,首先开动其中一台,当发生故障时停用而另一台自动开动,求两台记录仪无故障工作的总时间T的概率密度.
设(X,Y)在区域D:0<x<1,|y|≤x内服从均匀分布.设Z=2X+1,求D(Z).
设齐次线性方程组其中ab≠0,n≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
设X~N(0,1),Y=X2,求Y的概率密度函数.
设α1,…,αm,β为m+1维向量,β=α1+…+αm(m>1).证明:若α1,…,αm线性无关,则β一α1,…,β—αm线性无关.
设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,又此曲线上的点(0,1)处的切线方程为y=x+1,求该曲线方程,并求函数y(x)的极值.
一条曲线经过点(2,0),且在切点与y轴之间的切线长为2,求该曲线.
求的通解,及其在初始条件y|x=1=0下的特解.
设幂级数anxn在(一∞,+∞)内收敛,其和函数y(x)满足y"—2xy’—4y=0,y(0)=0,y’(0)=1(Ⅰ)证明:an+2=an,n=1,2,…;(Ⅱ)求y(x)的表达式。
随机试题
社会工作者:“小萍,我们归纳一下,你刚才讲的主要有两点,第一是疫情期间在家上网课,缺少学校氛围,有点松懈,学习状态和效率都让你不满意;第二是明年要毕业了,究竟是考研出国还是回老家找份工作,你有点迷茫。你看我说的有遗漏吗?”上述表述中,社会工作者运用的谈话技
两种材料界面上的反射因子大小主要取决于声波穿过界面时的什么变化()
A.应取得《进口药品注册证》B.应凭《医药产品注册证》C.应取得《进口准许证》D.应取得《药品经营许可证》E.应取得《进口药品通关单》依照《中华人民共和国药品管理法实施条例》
静脉采血取检验样本,首先应该采取下列哪种样本?()
根据材料,下列说法中正确的有()。Ⅰ.2008年山东省城乡居民分类消费价格与居民消费分类价格变化趋势完全一致Ⅱ.2008年山东省居民各种食品消费中,城市价格变化均小于农村Ⅲ.2008年在图中所示的几个价格指数中,山东省原材料、燃料、动力购
物业管理应用文书的类型不包括()。
《红梅赞》是歌剧()的主题歌。
数据库管理系统管理并且控制______资源的使用。
以下叙述中正确的是()。
Inthecauseofequalrights,feminists(女权主义者)havehadmuchtocomplainabout.Butonestrikingpieceofinequalityhasbeen【C1】
最新回复
(
0
)