首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X的绝对值不大于1, 在事件{-1<X<1)出现的条件下,X在(-1,1)内任一子区间上取值的条件概率与该子区间的长度成正比.试求: X的分布函数F(x)=P(X≤x);
设随机变量X的绝对值不大于1, 在事件{-1<X<1)出现的条件下,X在(-1,1)内任一子区间上取值的条件概率与该子区间的长度成正比.试求: X的分布函数F(x)=P(X≤x);
admin
2017-06-12
51
问题
设随机变量X的绝对值不大于1,
在事件{-1<X<1)出现的条件下,X在(-1,1)内任一子区间上取值的条件概率与该子区间的长度成正比.试求:
X的分布函数F(x)=P(X≤x);
选项
答案
由条件可知, 当x<-1时, F(x)=P{X≤x}=0; 又 F(-1)-=P{X≤-1}=P{X=-1}=[*] 当x≥1时, F(x)=P{X≤1}=1; 由已知条件得 P{-1<X<1}=1-P{X=-1}-P{x=1}=[*] 且在X的值属于(-1,1)的条件下,事件{-1<X≤x}(-1<x<1)发生的条件概率为 [*] 于是,对-1≤x<1,有P{-1<X≤x}=P{-1<X≤x,-1<X<1} =P{-1<X<1}. P{-1<X≤x|-1<X<1} [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/E4u4777K
0
考研数学一
相关试题推荐
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,t1t2为实常数.试问t1t2满足什么关系时,β1,β2,…,βs,也为Ax=0的一个基础解系.
将一枚硬币独立地掷两次,引进事件:A1={掷第一次出现正面},A2={掷第二次出现正面},A3={正、反面各出现一次},A4={正面出现两次},则事件
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(I):AX=0和(Ⅱ):ATAX=0,必有
已知向量组(I):α1,α2,α3;(II):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为r(I)=r(Ⅱ)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
y〞-4yˊ+4y=0的通解为y=(C1+C2x)e2x,由初始条件y(0)=1,yˊ(0)=2得C1=1,C2=0,则y=e2x,[*]
设函数Y=y(x)由方程ylny-x+y=0确定,判断曲线y=y(x)在点(1,1)附近的凹凸性.
设X1,X2,…,Xn是总体为N(μ,σ2)的简单随机样本,记:(Ⅰ)证明T是μ2的无偏估计量;(Ⅱ)当μ=0,σ=1时,求D(T).
设总体X的分布函数为F(x),(X1,X2,…,Xn)是取自此总体的一个子样,若F(x)的二阶矩阵存在,为子样均值,试证(Xi-)与(Xj-)的相关系数j=1,2,…,n.
(1997年试题,九)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是.没X为途中遇到红灯的次数,求随机变最X的分布律、分布函数和数学期望.
设事件A,B,C两两独立,则A,B,C相互独立的充分必要条件是().
随机试题
甲、乙、丙、丁成立一普通合伙企业,一年后甲转为有限合伙人,丙退伙。此前,合伙企业欠银行债务30万元,该债务直至舍伙企业因严重资不抵债被宣告破产仍未偿还。银行遂向甲要求偿还全部贷款,甲表示自己为有限合伙人,只按出资额的比例承担相应数额。银行向丙要求偿还全部贷
企业发生的下列交易或事项中,会引起会计等式两边同增的是()。
一急诊患者,男性,55岁,近两周来明显食欲不振、腹胀、厌油、乏力、恶心呕吐,发热,畏寒,因黄疸三天并逐渐加深来就诊,肝功检查ALT为1073U/L,血清胆红素为1.26μmol/L,AST/ALT>1。超声检查见肝脏肿大,回声粗糙,减低,肝内胆管内径为3m
A.心B.肝C.脾D.肺E.肾
A.区别健全人与不健全人的标准B.经治疗能满足病人生理及生存的最基本需要C.对人类的生命个体实施有效的道德控制D.体能和智能E.经治疗病人能发挥自己的聪明才智与特长,在智力、体力方面获得相应的发展生命的主要质量是
女孩,2岁,毛细支气管炎,体温38℃,一般情况好。第一次使用超声雾化器时,护士评估患者考虑最多的问题可能是
在进行无障碍设计时。下列对建筑基地内人行通路的要求中哪项不妥?[2006年第65题]
在环境管理体系中,对于运行控制的理解不正确的是( )。
存款人尚未清偿其开户银行债务的,不得申请撤销该账户。()
下面是湖北省近年各级各类学校数情况:2008—2016年,湖北省城区初中学校数量首次超过乡村初中在哪一年()
最新回复
(
0
)