首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α为n维单位列向量,E为n阶单位矩阵,则( )
设α为n维单位列向量,E为n阶单位矩阵,则( )
admin
2018-07-26
55
问题
设α为n维单位列向量,E为n阶单位矩阵,则( )
选项
A、E-αα
T
不可逆.
B、E+αα
T
不可逆.
C、E+2αα
T
不可逆.
D、E-2αα
T
不可逆.
答案
A
解析
1 如果取2维单位向量α=
,则题中4个选项中的矩阵依次为
其中只有选项A中的矩阵是不可逆的,其余均可逆,故选A.
2 对于任意的n维单位列向量α,可以证明选项A中的矩阵的行列式必等于零,为简明起见,以n=3为例来证明(一般情形的证明类似).设α=(α
1
,α
2
,α
3
)
T
是任意的3维单位列向量,则a
1
2
+a
2
2
+a
3
2
=1,选项A中的矩阵的行列式为(不妨设a
1
≠0)
det(E-αα
T
)
分别将第2行的a
2
倍、第3行的a
3
倍加到第1行上去,并利用a
1
2
+a
2
2
+a
3
2
=1,得行列式的第1行为零行,故该行列式等于零,从而知选项A中的矩阵是不可逆的,故选A.
3 对于单位列向量α,有α
T
α=1,由于
(E-αα
T
)α=α-α(α
T
α)=α-α=0,
故齐次线性方程组(E-αα
T
)x=0存在非零解α,因此矩阵E-αα
T
不可逆,故选A.
4 对于单位列向量α,有α
T
α=1,于是有
(E+αα
T
)(E-
α(α
T
α)α
T
=E,
(E+αα
T
)
-1
=E-
αα
T
;
(E+2αα
T
)(E-
α(α
T
α)α
T
=E,
(E+2αα
T
)
-1
=E-
αα
T
;
(E-2αα
T
)(E-2αα
T
)=E-2αα
T
-2α
T
α+4α(α
T
α)α
T
=E,
(E-2αα
T
)
-1
=E-2αα
T
转载请注明原文地址:https://kaotiyun.com/show/EHW4777K
0
考研数学三
相关试题推荐
设A,B均是n阶对称矩阵,则AB是对称矩阵的充要条件是____.
设z=f(x,y,u),其中f具有二阶连续偏导数,u(x,y)由方程u3-5xy+5u=1确定.求
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=其中A*是A的伴随矩阵,E为n阶单位矩阵.(Ⅰ)计算并化简PQ;(Ⅱ)证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
设f(x)在(a,b)内处处可导,且满足f’(x)≠0.证明对任何x0∈(a,b)一定存在x1,x2∈(a,b)使得f(x1)>f(x0)>f(x2).
求微分方程y’’+4y’+5y=8cosx的当x→-∞时为有界函数的特解.
求下列微分方程的通解或特解:
若αi1,αi2,…,αir与αj1,αj2,…,αjt都是α1,α2,…,αs的极大线性无关组,则r=t.
如果秩r(α1,α2,…,αs)=r(α1,α2,…,αs,αs+1),证明αs+1可由α1,α2,…,αs线性表出.
设D是位于曲线下方,x轴上方的无界区域.(Ⅰ)求区域D绕x轴旋转一周所成旋转体的体积V(a);(Ⅱ)当a为何值时,V(a)最小?并求此最小值.
曲线y=的渐近线方程为_______.
随机试题
蛋白质在生命活动中起着重要作用,包括()。
常见接种方法有哪些?根据细菌对气体的需求不同有哪几种培养方法?
A.壁细胞B.主细胞C.潘氏细胞D.杯状细胞E.颈黏液细胞能分泌盐酸的细胞
关于重症支气管哮喘的治疗,起效最快的药物是
A.药品生产企业定价B.药品经营企业定价C.省级价格主管部门定价D.国家价格主管部门定价计划生育药品()
[背景资料]承包商与业主签订了某小型水库加固工程施工承包合同,合同总价1200万元。合同约定。开工前业主向承包商支付10%的工程预付款;工程进度款按月支付,同时按工程进度款5%的比例预留保留金;当工程进度款累计超过合同总价的40%时,从超过部分的工程进度
税务师事务所的业务档案,应当自提交结果之日起保存()年。
银行的内控体系和风险管理部门具有有限的授权、地位、独立性。()
Themostusefulwayoflookingatamapisnotasapieceofpaper,butasarecordof______.
点M(3,-1,2)到直线的距离为_______。
最新回复
(
0
)