首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有向量α1=(1,2,0)T,α2=(1,a+2,一3a)T,α3=(一1,一6—2,n+26)T,β=(1,3,一3)T.试讨论当a、b为何值时, (1)β不能由α1,α2,α3线性表示; (2)β可由α1,α2,α3惟一地线性表示,并
设有向量α1=(1,2,0)T,α2=(1,a+2,一3a)T,α3=(一1,一6—2,n+26)T,β=(1,3,一3)T.试讨论当a、b为何值时, (1)β不能由α1,α2,α3线性表示; (2)β可由α1,α2,α3惟一地线性表示,并
admin
2016-04-11
57
问题
设有向量α
1
=(1,2,0)
T
,α
2
=(1,a+2,一3a)
T
,α
3
=(一1,一6—2,n+26)
T
,β=(1,3,一3)
T
.试讨论当a、b为何值时,
(1)β不能由α
1
,α
2
,α
3
线性表示;
(2)β可由α
1
,α
2
,α
3
惟一地线性表示,并求出表示式;
(3)β可由α
1
,α
2
,α
3
线性表示,但表示式不惟一,并求出表示式.
选项
答案
设有一组数x
1
,x
2
,x
3
,使得 x
1
α
1
+x
2
α
2
+x
3
α
3
=β (*) 对方程组(*)的增广矩阵施行初等行变换: [*] 可知r(A)≠[*],故方程组(*)无解,β不能由α
1
,α
2
,α
3
线性表示. (2)当a≠0,且a≠b时,r(A)=[*]=3,方程组(*)有唯一解:x
1
=1一[*],x
3
=0.故此时β可由α
1
,α
2
,α
3
唯一地线性表示为:β=[*]. (3)当a=b≠0时,对[*]施行初等行变换: [*] 可知,r(A)=[*]=2,故方程组(*)有无穷多解,通解为:x
1
=1一[*]+c,x
3
=c,其中c为任意常数.故此时,可由α
1
,α
2
,α
3
线性表示,但表示式不唯一,其表示式为β=[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/ENw4777K
0
考研数学一
相关试题推荐
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上点(x0,0)处发射一枚导弹向飞机飞去(x0>0),若导弹方向始终飞向飞机,且速度大小为2v.求导弹运行的轨迹满足的微分方程及初始条件。
设F(x)为f(x)的原函数,且当x≥0时,f(x)F(x)=,又F(0)=1,F(x)>0,求f(x).
设平面区域D={(x,y)|1/4≤x2+y2≤1,x≥0,y≥0},记则()
设A是n阶矩阵,证明:(Ⅰ)r(A)=1的充分必要条件是存在n阶非零列向量α,β,使得A=αβT;(Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
设A是4×5矩阵,ξ1=[1,一1,1,0.0]T,ξ2=[一1,3,一1,2,0]T,ξ3=[2,1,2,3,0]T,ξ4=[1,0,一1,1,一2]T,ξ5=[-2,4,3,2,5]T都是齐次线性方程组Ax=0的解,且Ax=0的任一解向量均可由ξ1,ξ
[*]先画出积分区域,如下图阴影部分所示.然后调换积分次序(先对y后对x)计算.这是因为被积函数为直接对x积分是无法求出结果的.解交换积分次序(先对y后对x)计算,得到:
设平面区域D={(x,y)x2+y2≤(π/4)2},三个二重积分M=(x3+y3)dxdy,N=cos(x+y)dxdy,P-的大小关系是()
利用变量替换u=x,v=y/x,可将方程化成新方程为().
商店收进甲厂生产的产品30箱,乙厂生产的同种产品20箱,甲厂产品每箱装100个,废品率为0.06,乙厂产品每箱120个,废品率为0.05.若将所有产品开箱混装,任取一个其为废品的概率
设X1和X2是任意两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)与f2(x),分布函数分别为F1(x)与F2(x),则
随机试题
乳母的合理膳食原则。
下列哪种新生的细胞是机化时出现的特征性细胞?
主治外感热病气分高热证,及肺热、胃火、肝火、心火等脏腑火热证主治外感热病热人营血之高热神昏谵语,及火热内生之血热妄行诸证
患者,女性,33岁,因心悸及颈部明显搏动感来诊。查体:血压130/50mmHg;X线胸片示左心室扩大、主动脉弓突出并有明显搏动感。该患者最可能发生的情况是
()于1994年颁布了《工程咨询单位资格认定暂行办法》。
供热站试运行要求()。
下列国际工程投标报价的策略中,()的特点是不着眼一次投标效益,用低报价吸引投标人。
下列关于原始创新、集成创新和引进消化吸收再创新的表述正确的有()。
太平洋战争(华南师范大学2004年世界近现代史真题)
世界上公认的第一台电子计算机是______。
最新回复
(
0
)