首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 的通解为[2,1,0,1]T+k[1,-1,2,0]T.记αj=[α1j,α2j,α3j,α4j]T,j=l,2,…,5.问: α4能否由α1,α2,α3线性表出,说明理由.
已知线性方程组 的通解为[2,1,0,1]T+k[1,-1,2,0]T.记αj=[α1j,α2j,α3j,α4j]T,j=l,2,…,5.问: α4能否由α1,α2,α3线性表出,说明理由.
admin
2018-09-25
27
问题
已知线性方程组
的通解为[2,1,0,1]
T
+k[1,-1,2,0]
T
.记α
j
=[α
1j
,α
2j
,α
3j
,α
4j
]T,j=l,2,…,5.问:
α
4
能否由α
1
,α
2
,α
3
线性表出,说明理由.
选项
答案
α
4
不能由α
1
,α
2
,α
3
线性表出,因对应齐次方程组的基础解系只有一个非零向量,故r(α
1
,α
2
,α
3
,α
4
)=r(α
1
,α
2
,α
3
,α
4
,α
5
)=4-1=3,且由对应齐次方程组的通解知,α
1
-α
2
+2α
3
=0,即α
1
,α
2
,α
3
线性相关,r(α
1
,α
2
,α
3
)<3,若α
4
能由α
1
,α
2
,α
3
线性表出,则r(α
4
,α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
)<3,这和r(α
1
,α
2
,α
3
,α
4
)=3矛盾,故α
4
不能由α
1
,α
2
,α
3
线性表出.
解析
转载请注明原文地址:https://kaotiyun.com/show/Eeg4777K
0
考研数学一
相关试题推荐
计算xyzdxdy,其中∑是x≥0,y≥0,x2+y2+z2=1的外侧(见图9.9).
设A,B均是n阶对称矩阵,则AB是对称矩阵的充要条件是__________.
设A,B,C是n阶矩阵,且ABC=E,则必有
设随机变量序列X1,X2,…,Xn,…相互独立,EXi=μi,DXi=2,i=1,2,…,则当n→∞时,(Xi一μi)依概率收敛于__________.
若A是对称矩阵,B是反对称矩阵,则AB是反对称矩阵的充要条件是AB=BA.
设A是n阶矩阵,α1,α2,α3是n维列向量,且α1≠0,Aα1=kα1,Aα2=lα1+kα2,Aα3=lα2+kα3,l≠0,证明α1,α2,α3线性无关.
已知α1=(1,一1,1)T,α2=(1,t,一1)T,α3=(t,1,2)T,β=(4,t2,一4)T,若β可以由α1,α2,α3线性表出且表示法不唯一,求t及β的表达式.
设X1,X2,…,Xn是取自正态总体X的简单随机样本,EX=μ,DX=4,试分别求出满足下列各式的最小样本容量n:(Ⅰ)P{|一μ|≤0.10}≥0.90;(Ⅱ)D≤0.10;(Ⅲ)E|-μ|≤0.10.
设(Ⅰ)求f′(x);(Ⅱ)证明:x=0是f(x)的极大值点;(Ⅲ)令xn=,考察f′(x0)是正的还是负的,n为非零整数;(Ⅳ)证明:对δ>0,f(x)在(-δ,0]上不单调上升,在[0,δ]上不单调下降.
已知方程组总有解,则λ应满足__________.
随机试题
胎盘附着部位全部修复需至产后
对于先兆早产的孕妇,首要的治疗是
灼热疼痛不见于何证型
旋覆花的用法是车前子的用法是
企业通过发行债券筹资须符合《证券法》规定,股份有限公司的净资产额不低于人民币()万元。
投资边际效率曲线较资本边际效率曲线更为陡峭。
在下列收入中,属于按劳分配性质的收入有()。
2015年,某省对农民工在本市(区、县)创业的意愿进行了调查,共完成有效样本3000个,调查结果如下:根据调查结果,()项举措最有可能有效提升农民工回乡创业的意愿。
A、B、C、D、A
Ascientistwhodoesresearchineconomicpsychologyandwhowantstopredictthewayinwhichconsumerswillspendtheirmoney
最新回复
(
0
)