首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设V是向量组α1=(1,1,2,3)T,α2=(-1,1,4,-1)T,α3=(5,-1,-8,9)T所生成的向量空间,求V的维数和它的一个标准正交基.
设V是向量组α1=(1,1,2,3)T,α2=(-1,1,4,-1)T,α3=(5,-1,-8,9)T所生成的向量空间,求V的维数和它的一个标准正交基.
admin
2021-02-25
85
问题
设V是向量组α
1
=(1,1,2,3)
T
,α
2
=(-1,1,4,-1)
T
,α
3
=(5,-1,-8,9)
T
所生成的向量空间,求V的维数和它的一个标准正交基.
选项
答案
由于 [*] 显然α
1
,α
2
线性无关且α
3
=2α
1
-3α
2
,因此向量空间V的维数是2,且α
1
,α
2
为它的一个基.为了求V的一个标准正交基,先将α
1
,α
2
正交化,令β
1
=α
1
=(1,1,2,3)
T
, [*] 再将β
1
,β
2
单位化,得 [*] 故e
1
,e
2
就是V的一个标准正交基.
解析
本题考查由一组向量所生成的向量空间的概念和标准正交基的化法.由于V是由α
1
,α
2
,α
3
所生成的向量空间,所以V的维数等于向量组α
1
,α
2
,α
3
的秩,且α
1
,α
2
,α
3
的任一极大线性无关组便是V的一个基.
转载请注明原文地址:https://kaotiyun.com/show/Ei84777K
0
考研数学二
相关试题推荐
已知r(a1,a2,a3)=2,r(a2,a3,a4)=3,证明:a4不能由a1,a2,a3线性表示。
n阶矩阵,求A的特征值和特征向量。
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.(1)求常数a;(2)求方程组AX=0的通解.
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。将β1,β2,β3由α1,α2,α3线性表示。
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。求a的值;
已知A是n阶对称矩阵,B是n阶反对称矩阵,证明A—B2是对称矩阵。
设A是n阶矩阵,证明:A=O的充要条件是AAT=O.
设A=,B=U-1A*U.求B+2E的特征值和特征向量.
设三阶实对称矩阵A的特征值为λ1=1,λ2=一1,λ3=0;对应λ1,λ2的特征向量依次为P1=(1,2,2)T,P2=(2,1,一2)T,求A。
已知向量组(Ⅰ)能由向量组(Ⅱ)线性表出,且秩(Ⅰ)=秩(Ⅱ),证明向量组(Ⅰ)与向量组(Ⅱ)等价.
随机试题
普通线图是用来表示()。
收益法中所指的收益是( )。
镗铣类加工中心适合什么样零件的加工?能进行哪些工序的加工?
估测通用设备的重置成本,评估师一般应首先考虑使用()。
下列关于风险与波动性的说法中正确的是()。
下列各项企业竞争策略运用了波士顿矩阵分析的是()。(2013年)
已知函数f(x)=+slnx。求函数f(x)的最小正周期。
AtleastsincetheIndustrialRevolution,genderroleshavebeeninastateoftransition.Asaresult,culturalscriptsaboutm
Ithasbeenprovenmanytimesthatfarmersfarmtheirownlandmorecarefullyandproductivelythantheycultivatesomeoneelse’
ShouldtheMediaApologizeforInaccurateReporting?1.有关媒体是否应该为不实报道道歉的话题引起争议2.有人支持,也有人反对3.我的观点
最新回复
(
0
)