首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(0,+∞)内可导,下述论断正确的是 ( )
设f(x)在(0,+∞)内可导,下述论断正确的是 ( )
admin
2014-04-23
48
问题
设f(x)在(0,+∞)内可导,下述论断正确的是 ( )
选项
A、设存在X>0,在区间(X,+∞)内f
’
(x)有界,则,f
’
(x)在(X,+∞)内亦必有界.
B、设存在X>0,在区间(X,+∞)内f(x)有界,则f
’
(x)在(X,+∞)内亦必有界.
C、设存在δ>0,在区间(0,δ)内f
’
(x)有界,则f(x)在(0,δ)内亦必有界.
D、设存在δ>0,在区间(0,δ)内f(x)有界,则f
’
(x)在(0,δ)内亦必有界.
答案
C
解析
C的证明.因为在(0,δ)内f
’
(x)有界,所以存在M>0,当0<x<δ时,|f
’
(x)|≤M.对于区间(0,δ)内的任意x,另取同定的x
0
∈(0,δ),有|f(x)|=f(x)-|f(x)+f(x
0
)|≤|f(x)一f(x
0
)|+|f(x
0
)|=|f
’
(ξ)(x一x
0
)|+f(x
0
)|<Mδ+f(x
0
)|.所以f(x)在区间(0,δ)内有界.A的反例:f(x)=x,f
’
(x)=1.在区间(1,+∞)内f
’
(x)有界.但f(x)在(1,+∞)内无界.B的反例:
在区间(1,+∞)内f(x)有界,在(1,+∞)内f
’
(x)无界.D的反例:
在区间(0,1)内,f(x)有界.在(0,1)内f
’
(x)无界.
转载请注明原文地址:https://kaotiyun.com/show/FA54777K
0
考研数学一
相关试题推荐
求下列向量组的秩,并求一个最大无关组:
设a1,a2线性相关,b1,b2也线性相关,问a1+b1,a2+b2是否一定线性相关?试举例说明之.
设0<a1<1,an+1=1n(2-an)+an,证明:数列{an}收敛,并求.
已知f’(1nx)=又f(0)=0,求
设函数f(x)=,则下列结论正确的是().
(Ⅰ)设连续函数f(x)>0,且f(-x)f(x)≡1,又g(x)为偶函数,证明:(Ⅱ)计算
设f(x)二阶可导,且,有f(2)=0,证明:存在ξ∈(1,2),使得f"(ξ)-2f’(ξ)=2
设n元实二次型f(x1,x2,…,xn)=xTAx,其中A有特征值λ1,λ2,…,λn且满足λ1≤λ2≤…≤λn.证明对任何n维列向量x,有λ1xTx≤xTAx≤λnxTx;
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明:存在ξ∈(a,b)使f’(ξ)/g’(ξ)+∫aξf(t)dt/∫ξbf(t)dt=0
设f(x)在(0,+∞)内可导,下述论断正确的是()
随机试题
蛋白质在生命活动中起着重要作用,包括()。
常见接种方法有哪些?根据细菌对气体的需求不同有哪几种培养方法?
A.壁细胞B.主细胞C.潘氏细胞D.杯状细胞E.颈黏液细胞能分泌盐酸的细胞
关于重症支气管哮喘的治疗,起效最快的药物是
A.药品生产企业定价B.药品经营企业定价C.省级价格主管部门定价D.国家价格主管部门定价计划生育药品()
[背景资料]承包商与业主签订了某小型水库加固工程施工承包合同,合同总价1200万元。合同约定。开工前业主向承包商支付10%的工程预付款;工程进度款按月支付,同时按工程进度款5%的比例预留保留金;当工程进度款累计超过合同总价的40%时,从超过部分的工程进度
税务师事务所的业务档案,应当自提交结果之日起保存()年。
银行的内控体系和风险管理部门具有有限的授权、地位、独立性。()
Themostusefulwayoflookingatamapisnotasapieceofpaper,butasarecordof______.
点M(3,-1,2)到直线的距离为_______。
最新回复
(
0
)