首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值.x1,x2是分别属于λ1和λ2的特征向量,试证明:x1+x2不是A的特征向量.
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值.x1,x2是分别属于λ1和λ2的特征向量,试证明:x1+x2不是A的特征向量.
admin
2018-08-22
56
问题
设A为n阶矩阵,λ
1
和λ
2
是A的两个不同的特征值.x
1
,x
2
是分别属于λ
1
和λ
2
的特征向量,试证明:x
1
+x
2
不是A的特征向量.
选项
答案
反证法 假设x
1
+x
2
是A的特征向量,则存在数λ,使得A(x
1
+x
2
)=λ(x
1
+x
2
),则 (λ-λ
1
)x
1
+(λ—λ
2
)x
2
=0. 因为λ
1
≠λ
2
,所以x
1
,x
2
线性无关,则[*]矛盾.故x
1
+x
2
不是A的特征向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/FFj4777K
0
考研数学二
相关试题推荐
设A是m×n阶矩阵,B是n×m阶矩阵,则().
求微分方程y"+5y’+6y=2e-x的通解.
设A,B,C为常数,B2一AC>0,A≠0.u(x,y)具有二阶连续偏导数,试证明:必存在非奇异线性变换ξ=λ1x+y,η=λ2x+y(λ1,λ2为常数),
在球面x2+y2+z2=5R2(x>0,y>0,z>0)上,求函数f(x,y,z)=lnx+lny+3lnz的最大值,并利用所得结果证明不等式(a>0,b>0,c>0).
设a0,a1,…,an-1是n个实数,方阵(1)若λ是A的特征值,证明:ξ=[1,λ,λ2,…,λn-1]T是A的对应于特征值λ的特征向量;(2)若A有n个互异的特征值λ1,λ2,…,λn,求可逆阵P,使P-1AP=A.
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记αj=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由;(2)α4能否由α1,α2,α
设A是三阶实矩阵,λ1,λ2,λ3是A的三个不同的特征值,ξ1,ξ2,ξ3是三个对应的特征向量,证明:当λ2λ3≠0时,向量组ξ1,A(ξ1+ξ2),A2(ξ1+ξ2+ξ3)线性无关.
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=一1,则它的每个元素等于自己的代数余子式乘一1.
设fn(x)=1一(1一cosx)n,求证:(1)任意正整数n,fn(x)=中仅有一根;(2)设有
求直线绕z轴旋转而成的旋转曲面方程,并问a、b不同时为零时,该曲面为何种曲面?
随机试题
妊娠期使用某些药物可能导致胎儿发育异常,其中最易受到药物影响,可能产生形态或者功能上异常而造成胎儿畸形的阶段是()。
下列关于存储器的叙述中,正确的是()。
公司在其企业风险管理(ERM)流程中会识别供应链风险。识别出此风险后,公司希望确定此风险可能会对其目标产生多大的影响。他们应将风险评估的重点:
集资诈骗罪区别于非法集资等行为的特征是()。
经业主大会同意,住宅专项维修资金可以购买()。
从内涵上看,“导游”这一概念包含()的含义。
A、 B、 C、 D、 B
实现中华民族伟大复兴,迫切要求我国由一个文化资源大国转变成为一个文化强国,这是中华民族几千年文化积淀赋予我们的历史使命。文化强国的内涵包括()
执行语句S=Len(Mid(”VisualProgram”,6))后,S的值为()。
FluandHowNottoCatchItThiswinter,inofficesandworkplacesthroughoutthecountry,peopleareatriskofbecominga
最新回复
(
0
)